
SANDIA REPORT
SAND2005-XXXX
Unlimited Release
Printed April 26, 2005

An Introduction to Numerical Analysis
for Computational Fluid Mechanics

S. Scott Collis (Sandia National Laboratories)

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia is a multiprogram laboratory operated by Sandia Corporation,
a Lockheed Martin Company, for the United States Department of Energy’s
National Nuclear Security Administration under Contract DE-AC04-94-AL85000.

Approved for public release; further dissemination unlimited.

Issued by Sandia National Laboratories, operated for the United States Department of
Energy by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of
the United States Government. Neither the United States Government, nor any agency
thereof, nor any of their employees, nor any of their contractors, subcontractors, or their
employees, make any warranty, express or implied, or assume any legal liability or re-
sponsibility for the accuracy, completeness, or usefulness of any information, appara-
tus, product, or process disclosed, or represent that its use would not infringe privately
owned rights. Reference herein to any specific commercial product, process, or service
by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute
or imply its endorsement, recommendation, or favoring by the United States Govern-
ment, any agency thereof, or any of their contractors or subcontractors. The views and
opinions expressed herein do not necessarily state or reflect those of the United States
Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from
the best available copy.

Available to DOE and DOE contractors from
U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865) 576-8401
Facsimile: (865) 576-5728
E-Mail: reports@adonis.osti.gov
Online ordering: http://www.doe.gov/bridge

Available to the public from
U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Rd
Springfield, VA 22161

Telephone: (800) 553-6847
Facsimile: (703) 605-6900
E-Mail: orders@ntis.fedworld.gov
Online ordering: http://www.ntis.gov/ordering.htm

D
EP

ARTMENT OF ENERG
Y

•� •�U
N

IT
ED

STATES OF AM

ER
IC

A

AN INTRODUCTION TO NUMERICAL ANALYSIS FOR

COMPUTATIONAL FLUID MECHANICS

By

S. Scott Collis

Computational Mathematics & Algorithms

Sandia National Laboratories 1

April 26, 2005

1Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed-Martin Company, for the United
States Department of Energy under Contract DE-AC04-94AL85000.

Acknowledgments

These notes were originally assembled for use in MECH 676 Computa-

tional Fluid Mechanics, which I taught at Rice University. In writing these notes,

I have made extensive use of my class notes from Prof. Parviz Moin’s course in

numerical analysis at Stanford University. Since that time, Prof. Moin has pub-

lished his class notes as the Fundamentals of Engineering Numerical Analysis,

Cambridge University Press, 2001. Readers are strongly encouraged to consult this

text. However, I believe that the focus of the current notes on computational fluid

mechanics nicely complements Moin’s work and future versions of this document

will be further specialized to methods for problems in fluid mechanics. As usual,

all mistakes in the presentation are mine and comments/suggestions can be sent to

sscoll@sandia.gov

iii

Table of Contents

1 Introduction . 1

1.1 Approximation of physical processes . 2

1.2 Numerical approximation . 3

1.3 Sources of error . 5

2 Interpolation . 7

2.1 Polynomial Interpolation . 7

2.2 Spline Interpolation . 9

3 Numerical Differentiation . 13

3.1 Finite Differences . 13

3.2 Polynomial Interpolation and Finite Differences 16

3.3 Padé Approximations . 17

4 Numerical Integration . 21

4.1 Analysis of Integration Errors . 22

4.1.1 Midpoint Rule . 22

4.1.2 Trapezoidal Rule . 23

4.1.3 Trapezoidal Rule with End-Corrections 24

4.1.4 Simpson’s Rule . 24

4.2 Richardson Extrapolation and Romberg Integration 25

4.3 Adaptive Quadrature . 26

4.4 Gauss Quadrature . 28

5 Ordinary Differential Equations . 31

5.1 Initial Value Problems . 32

5.1.1 Taylor Series Methods . 32

5.1.2 Numerical Stability and the Model Equation 33

5.1.3 Explicit Euler . 36

5.1.4 Implicit or Backward Euler . 38

5.1.5 Numerical Accuracy: Magnitude and Phase Errors 39

5.1.6 Trapezoidal Method . 40

v

5.1.7 Linearization for Implicit Methods . 42

5.1.8 Runge–Kutta Methods . 43

5.1.9 Multi-Step Methods . 47

5.1.10 Systems of Ordinary Differential Equations 52

5.1.11 Linearization of Systems . 54

5.2 Boundary Value Problems . 55

5.2.1 Shooting Methods . 56

5.2.2 Direct Methods . 58

5.3 Differential Eigenvalue Problems . 60

6 Partial Differential Equations . 63

6.1 Semi-Discretization and Matrix Stability Analysis 64

6.2 von Neumann Analysis . 69

6.3 Modified Wave Number Analysis . 70

6.4 Crank–Nicholson Method . 72

6.5 Modified Equation . 74

6.6 Inconsistency: the Dufort–Frankel Method . 75

6.7 Multi-Dimensions . 77

6.7.1 Explicit Schemes . 77

6.7.2 Implicit Schemes . 78

6.7.3 Approximate Factorization . 79

6.8 Iterative Methods . 82

6.8.1 Elliptic Partial Differential Equations . 82

6.8.2 Iterative methods . 83

6.8.3 Point Jacobi Method . 85

6.8.4 Gauss-Seidel Method . 85

6.8.5 Successive Over Relaxation (SOR) . 86

6.8.6 Alternating Direction Implicit . 89

6.9 Methods for Hyperbolic Equations . 90

6.9.1 Lax-Fredrich Method . 91

6.9.2 Lax-Wendroff Method . 91

6.9.3 Richtmyer Method . 92

6.9.4 MacCormack Method . 92

6.9.5 Conservative Discretizations . 94

vi

6.9.6 Nonconservative Discretizations . 95

6.10 Example: Inviscid Burgers Equation . 96

7 Numerical Solution of the Navier–Stokes Equations 99

7.1 Navier–Stokes . 99

7.2 The Fractional Step Method . 100

7.3 Upwinding and Numerical dissipation . 102

7.4 Finite Difference Methods . 103

7.4.1 Model problem . 103

7.4.2 Central Difference . 103

7.4.3 Upwind Difference . 104

7.4.4 Interpretation in terms of Iterative Methods 106

7.5 Theoretical perspective . 108

7.5.1 Summary . 111

Bibliography . 113

vii

Chapter 1

Introduction

Computational Fluid Dynamics, or CFD for short, is a broad reaching field that utilizes advanced

methods of numerical analysis to solve problems in continuum mechanics. These problems may

include the determination of lift and drag on an aircraft or car; simulation of turbulent flow and heat

transfer in a jet engine; the study of the atmospheric boundary layer; or even the interstellar wind.

The fundamental similarity in each of these examples is that the physical process can be modeled,

at some level of approximation, as a continuum of fluid particles and the equations which represent

the continuum dynamics can be approximately solved using a computer. It is important to point out,

however, that the appropriate mathematical models and numerical methods may be very different

for each problem.

In the course of these notes, we will present the fundamental concepts and methods of scien-

tific computing required to utilize, analyze, and develop CFD algorithms. This course will not be

an exhaustive review of CFD algorithms nor will we discuss many of the state-of-the-art methods

currently in use. The number of unique methods and their complexity make that an impossible

task for a single semester course. Instead, we will focus on the fundamentals of scientific com-

puting and apply these fundamentals to study selected CFD algorithms. The emphasis will be on

understanding the methods of analysis so that you can interpret, select, and/or design appropriate

algorithms to solve the inevitably more and more complex problems that you will encounter in

your careers.

A consistent theme throughout this course will be the identification and estimation of errors

in approximation. Just like experimental measurements, there are sources of uncertainty and error

in numerical simulations. These include: mathematical approximations of the physical process,

truncation error in the numerical method, and round-off error in the computer. In order to have

faith in the numerical solutions, we have to establish the order of magnitude of each of these errors

and justify that they do not unduly influence our computed results.

1

2 Chapter 1. Introduction

1.1 Approximation of physical processes

There are many levels at which we can mathematically model the motion of a fluid. Choosing the

appropriate model requires a trade-off between fidelity of the approximation and expense in obtain-

ing the solution. If the world consisted of terra-flop personal computers, perhaps the Navier–Stokes

equations would be used for all CFD calculations. Unfortunately, computer resources are limited

today, even with the vast improvements in speed and memory of recent computers. Thus, one of

the first tasks of the numerical analyst is to select a mathematical model of the fluid system which

includes the important physical processes while being computationally affordable. Fortunately

there is a clear hierarchy of physical models to choose from.

The most general model under routine use is at the level of the fluid molecule where the motion

of individual molecules is tracked and inter-molecular interactions are simulated. For example,

this level of approximation is required for the rarefied gases encountered during the reentry of

space-craft in the upper atmosphere. Although this model can certainly be used at lower speeds

and altitudes, it becomes prohibitively expensive to track individual molecules under non-rarefied

conditions. Thus, another mathematical model is needed.

By far, the most commonly used model for fluid dynamics is the Navier–Stokes equations. Un-

like the molecular model described above, the fluid is treated as a continuum and only statistical

quantities such as temperature, bulk velocity, and pressure are available at this level of approxima-

tion. Fortunately, the Navier–Stokes equations accurately predict the dynamics of most common

fluids under a wide range of conditions (the most notable exceptions are non-Newtonian fluids,

rarefied gases, and flows with very strong shock waves). For low speed problems or liquid flows,

we can make the further assumption that the density is approximately constant which leads to the

somewhat simpler incompressible Navier–Stokes equations. We will have much more to say about

the Navier–Stokes equations in later chapters.

In moving from the molecular description to the continuum model we basically performed an

averaging process over the molecules to obtain bulk quantities such as temperature and pressure.

It turns out that averaging (or more generally filtering) is one of the primary means of simplifying

our mathematical model. For example, if we average the Navier–Stokes equations in one space

dimension, then we are left with the two-dimensional Navier–Stokes equations. As long as the

process that we wish to simulate is approximately two-dimensional then this will be an adequate

model. Of course, we can continue by averaging over two spatial dimensions or even over all three

directions if we are only interested in the variation of mean quantities.

If instead of averaging, we use a low-pass filter in space, then we obtain the so-called Large

Chapter 1. Introduction 3

Eddy Simulation (LES) equations. This model is very useful for turbulent flows which generally

have a wide range of spatial length scales. By using a low-pass filter we only include the large

scales, or eddies, in our computation while the small-scale eddies are modeled using empirical

relationships. It turns out that the large eddies contain most of the energy, while the small eddies

are nearly isotropic and therefore easier to model. By only explicitly including the large eddies in

the computation, a tremendous savings is obtained over a full Navier–Stokes solution (often called

Direct Numerical Simulation) which requires the resolution of all the scales of a turbulent flow.

At the next level in our hierarchy of models, we can average the Navier–Stokes equations

in time (or use an ensemble average for unsteady flows) which leads to the Reynolds Averaged

Navier–Stokes (RANS) equations. In this case, we are faced with the task of modeling all the

scales of a turbulent flow. This task is much more difficult than that encountered with the LES

equations. The development of accurate and robust turbulence models is an active area of research.

This research is particularly important, since RANS solutions are currently the highest level of

approximation commonly used in CFD calculations for engineering design.

Given the hierarchy of mathematical models that we have introduced, it is possible, under

certain circumstances, to make further approximations that take into account special physical char-

acteristics of the flow under consideration. For example, Prandlt’s landmark discovery that viscous

effects are primarily limited to a boundary layer near a solid surface has lead to the boundary layer

equations which are a special form of the Navier–Stokes equations that are considerably easier to

solve numerically. Outside of the boundary layer, which means most of the flow in the case of an

aircraft, the flow is generally inviscid and the viscous terms in the Navier–Stokes equations can

be dropped leading to the Euler equations. If there are no shock waves in the flow, then further

simplification can be obtained by using the potential flow equations.

The admittedly brief discussion given here is only meant to give the reader an appreciation for

the variety of mathematical models available in CFD and the importance in selecting the appropri-

ate model before attempting a numerical solution. The most ingenious numerical method applied

to an inappropriate flow model will result in, at best, an inefficient solution method, and at worst

an unusable method.

1.2 Numerical approximation

Once an appropriate mathematical model is chosen the next step is to design a numerical method

which obtains the solution with sufficient efficiency and accuracy for the problem at hand. There

4 Chapter 1. Introduction

are three primary techniques used to convert the partial differential equations which form our math-

ematical model into a set of algebraic equations that can be solved on a computer: finite difference,

finite volume, and finite element.1 Each of these methods involve dividing or discretizing space

and time in some manner.

The most basic method, and the one that we will discuss in the most detail, is the finite dif-

ference method. Here the equations of motion are discretized on a series of node points and the

differential operators are approximated using algebraic expressions derived from Taylor series ex-

pansions. Finite difference methods have the advantage of being simple to understand and code on

a computer and it is relatively easy to implement highly accurate finite difference algorithms. Their

main disadvantage is that they generally require the domain to be divided into a rectangular array

of node points (called a structured mesh) which can make implementation difficult for complex

geometries.

In the finite volume method, the equations are written in integral form and the domain is di-

vided into small control volumes on which the integral equations are enforced using numerical

integration. The finite volume method has the advantage that the control volumes can be of arbi-

trary shape with triangles commonly used in two-dimensions and tetrahedra in three dimensions.

This gives the finite volume method extensive flexibility in representing complex domains through

the use of unstructured meshes. One challenge in finite volume research is in the development of

highly accurate algorithms.

Similar to finite volumes, the finite element method divides the domain into volumes, called

elements, and over each element the approximate solution is represented by a set of interpolating

functions. A significant advantage of the finite element method is that formal mathematical anal-

ysis can be used to prove accuracy and convergence under some conditions. Finite elements can

very naturally be used on unstructured meshes and high accuracy can be obtained by judicious

selection of the interpolating functions over each element. The main disadvantage of the finite

element method lies in the complexity of the computer algorithms and the reduction in computa-

tional efficiency compared to finite volume and finite difference. With improvements in computer

capability and the need to perform calculations on more complex flow systems, the finite element

method has become increasingly popular in recent years.

All of these methods share similarities, and under certain (rather limited) circumstances, each

can be shown to be equivalent to the other. That is not to say that one method does not have

advantages over the other for certain problems. As indicated above, finite differences are noted

1A fourth technique, called spectral methods, based on global function approximation is often used for calculations
requiring extremely high accuracy. However, we will not have the opportunity to discuss these methods in this class.

Chapter 1. Introduction 5

for their simplicity and computational efficiency, finite volumes for their ability to handle complex

geometries, and finite elements because of their high accuracy and mathematical foundation. In

this class, we will focus primarily on finite difference methods since this technique is the most

established in current CFD codes and since numerical analysis applied to finite difference methods

are also useful for analyzing finite volume and finite element methods.

1.3 Sources of error

All numerical solutions have sources of error. It is our responsibility to ensure that these errors

are small enough so that they do not render our solution meaningless. The first possible source

of error comes in the selection of our mathematical approximation. If we assume that the flow is

two-dimensional when three-dimensional effects are important then an error has been made which

may render our solutions useless. A more subtle error occurs in LES and RANS calculations. Here

we rely on an empirical model to accurately predict the dynamics of the unresolved turbulence.

Clearly errors in the predicted solutions will occur and they are a function of both the turbulence

model used and the flow to which they are applied. A careful selection and validation of the

mathematical model is our primary weapon against these types of errors.

Any numerical algorithm, be it finite difference or finite element, introduces numerical errors

into the solution. These errors are commonly called truncation error in finite difference analysis

since they originate from the truncation of a Taylor series expansion of the solution. Other sources

of numerical errors in CFD include the treatment of boundary conditions and non-uniform meshes.

We will have much more to say about numerical errors in later chapters.

Once the mathematical model is selected and an appropriate numerical method is implemented

there is one additional source of error. These errors come from the fact that computers only contain

a finite precision approximation to floating point numbers. Because of this, every floating point

operation (flop) introduces a small amount of error due to round-off of the least significant figure.

Under most circumstances, this round-off error is sufficiently small that it does not adversely effect

the solution. However, it is possible for round-off error to have a catastrophic effect on the solution

for poorly written algorithms. A primary source of catastrophic round-off error occurs when two

numbers that are very nearly equal are subtracted and you must be careful to ensure that your

algorithms are written to avoid this occurrence. Some problems in CFD, such as instability waves

in a laminar boundary layer and aeroacoustics, are particularly sensitive to round-off errors and

extreme care must be used in solving these types of problems. Students interested in learning more

6 Chapter 1. Introduction

about finite precision calculations should refer to one of the many texts on numerical computation.2

2W. Cheney & D. Kincad, Numerical Mathematics and Computing, 2nd edition, Brooks/Cole, 1985.

Chapter 2

Interpolation

A fundamental problem of numerical analysis rests in the approximation of a function by a discrete

set of data. The data points might represent the nodes in a finite difference computation or may

be the result of an experimental measurement. Whichever the case, we are faced with the task of

fitting a smooth curve through the data that approximates, in some sense, the actual function so

that we can estimate its value between any two data points or estimate the derivatives or integral

of the function. Here, we will discuss interpolation which refers to the case where a smooth curve

is required to pass through all the data points. If the data has some uncertainty (which is often

the case for experiments) then the method of least squares, which does not strictly require the

approximating function to pass through the data points, may be more appropriate.

2.1 Polynomial Interpolation

Given a set of n + 1 (possibly non-equally spaced) data (xi, yi), we can construct a polynomial of

degree n which passes through the data

P (x) = a0 + a1x + a2x
2 + · · · + anxn (2.1)

This leads to a system of n + 1 equations in n + 1 unknowns, a0, a1, · · · , an of the form

yi = P (xi) = a0 + a1xi + a2x
2
i + · · · + anxn

i i = 0, · · · , n (2.2)

This linear system of equations can be solved by Gaussian elimination to determine the unknown

coefficients. Unfortunately this procedure is not very useful since the system of equations generally

becomes ill-conditioned for large n. Fortunately, there is an alternative method for defining the

polynomial which leads to an explicit (you don’t have to solve a system of equations) way of

determining the coefficients.

Let’s define a polynomial of degree n which is associated with each point xj

Lj(x) = αj(x − x0)(x − x1) · · · (x − xj−1)(x − xj+1) · · · (x − xn) (2.3)

7

8 Chapter 2. Interpolation

where αj is a constant to be determined. Using the product notation for Lj leads to

Lj(x) = αj

n∏

i=0
i�=j

(x − xi) (2.4)

Note that by construction Lj(xi) = 0 for i �= j and that

Lj(xj) = αj

n∏

i=0
i�=j

(xj − xi) (2.5)

If we let

αj =

⎡

⎢⎣
n∏

i=0
i�=j

(xj − xi)

⎤

⎥⎦

−1

(2.6)

then

Lj(x) =

⎧
⎨

⎩
0 if x �= xj

1 if x = xj

(2.7)

Forming the linear combination:

P (x) =
n∑

j=0
yjLj(x) (2.8)

leads to a polynomial of degree n since it is composed of a linear combination of polynomials,

each of degree n. This polynomial form is called a Lagrange polynomial and it is a classical

way of representing a polynomial interpolating function in a convenient and efficient manner. The

Lagrange polynomial is constructed to pass identically through the data points. For example, at

x = xi

P (xi) = y0L0(xi) + y1L1(xi) + · · · + yiLi(xi) + · · · + ynLn(xi) (2.9)

which by (2.7) simplifies to

P (xi) = yi (2.10)

Thus, the polynomial P is the desired interpolate to the set of data points. It can be readily shown

that polynomial interpolation is unique so that there is only one polynomial of degree n which

passes through a set of n + 1 data points. The Lagrange polynomial is just a more convenient

and numerically more attractive way of expressing the same polynomial that we would obtain by

solving a system of equations like (2.2).

Great caution must be used when performing polynomial interpolation of large data sets, say

greater than 10 points. Although the interpolant will pass through the data points it can oscillate

Chapter 2. Interpolation 9

wildly between them, leading to large errors in the interpolated values and especially derivatives.

Better results can be obtained by using piecewise Lagrange interpolation. Instead of fitting a single

polynomial of order n to all the data, the dataset is broken into segments (or elements) with lower

order interpolation used on each segment. This approach is widely used and is the basis for the

Finite Element Method. A limitation of this technique is that derivatives of the interpolant are

discontinuous at the segment boundaries. To address this limitation, we now introduce spline

interpolation.

2.2 Spline Interpolation

A spline is a function which consists of piecewise polynomials which are joined together with

certain smoothness conditions. The simplest example (a spline of degree 1) is the piecewise linear

polynomial which consists of linear segments that are connected to achieve a continuous function.

With each increase in polynomial order, we can enforce continuity of higher and higher derivatives.

By far the most popular spline function is the cubic spline for which the first two derivatives are

continuous at the data points (often called knots in the theory of splines). Interpolation with cubic

splines is essentially equivalent to passing a flexible plastic ruler through the dataset.

Let gi(x) be a cubic polynomial in the interval xi ≤ x ≤ xi+1 and let g(x) denote the collection

of all the cubics for the entire range of x. Since g(x) is piecewise cubic, its second derivative, g ′′,

is piecewise linear. For an arbitrary interval, xi ≤ x ≤ xi+1, the equation for the second derivative

can be written as

g′′
i (x) = g′′(xi)

x − xi+1

xi − xi+1
+ g′′(xi+1)

x − xi

xi+1 − xi
(2.11)

Note that in (2.11) continuity of the second derivative has been enforced at the data points. Inte-

grating this equation twice leads to

g′
i(x) =

g′′(xi)
xi − xi+1

(x − xi+1)2

2
+

g′′(xi+1)
xi+1 − xi

(x − xi)2

2
+ C1 (2.12)

and

gi(x) =
g′′(xi)

xi − xi+1

(x − xi+1)3

6
+

g′′(xi+1)
xi+1 − xi

(x − xi)3

6
+ C1x + C2 (2.13)

The constants C1 and C2 are determined by constraining the interpolant to pass through the data

points

gi(xi) = yi gi(xi+1) = yi+1 (2.14)

10 Chapter 2. Interpolation

Using these values of C1 and C2 in (2.13) leads to the spline interpolant

gi(x) =
g′′(xi)

6

[
(xi+1 − x)3

∆i

− ∆i(xi+1 − x)
]

+

g′′(xi+1)
6

[
(x − xi)3

∆i
− ∆i(x − xi)

]

+ yi
xi+1 − x

∆i
+ yi+1

x − xi

∆i
(2.15)

where xi ≤ x ≤ xi+1 and ∆i = xi+1 − xi. So far we have enforced continuity of the second

derivative in (2.11) and of the function in (2.14). It remains to enforce continuity of the first

derivative at the data points

g′
i(xi) = g′

i−1(xi) (2.16)

which is accomplished by the proper choice of the values g ′′(xi) which are still unknown. The

desired system of equations for g ′′(xi) is obtained by using (2.12) in (2.16):

∆i−1

6
g′′(xi−1) +

∆i−1 + ∆i

3
g′′(xi) +

∆i

6
g′′(xi+1) =

yi+1 − yi

∆i
− yi − yi−1

∆i−1
i = 1, 2, 3, . . . , n − 1 (2.17)

This is a system of n − 1 equations for the n + 1 unknowns g ′′(x0), g′′(x1), . . . , g′′(xn). The

equations are in tridiagonal form and are diagonally dominant so that they can be solved efficiently.

The additional two equations required to solve the problem are determined by prescribing the end

conditions. Some possible choices are

1. Parabolic run-out

g′′(x0) = g′′(x1) (2.18a)

g′′(xn) = g′′(xn−1) (2.18b)

2. Free run-out also called a natural spline

g′′(x0) = 0 (2.19a)

g′′(xn) = 0 (2.19b)

3. Combination of parabolic and free run-out

g′′(x0) = αg′′(x1) (2.20a)

Chapter 2. Interpolation 11

g′′(xn) = βg′′(xn−1) (2.20b)

where α and β are set by the user.

4. Periodic

g′′(x0) = g′′(xn−1) (2.21a)

g′′(x1) = g′′(xn) (2.21b)

The procedure used in spline interpolation is to solve the system of equations (2.17) along with

the appropriate end conditions to determine the g ′′(xi). The result is used in equation (2.15) to

determine the interpolant gi(x) for the interval xi ≤ x ≤ xi+1. In general, spline interpolation is

preferable to Lagrange polynomial interpolation since it is efficient and leads to smooth curves.

Chapter 3

Numerical Differentiation

Constructing approximations to derivatives is an essential step toward obtaining numerical solu-

tions to differential equations. Typically we think of numerical differentiation as a point operator

which takes function values at neighboring points and combines them to approximate a derivative.

This is the classical Finite Difference approach. However, numerical derivatives can also be eas-

ily computed using the polynomial interpolations presented in the previous chapter. Constructing

derivative approximations based on interpolation is the heart of the Finite Element method. Al-

though we will primarily focus on the finite difference approach, it is often possible to cast a finite

difference point operator into an analogous polynomial interpolation method and, depending on

the application, both frameworks are useful to the numerical analyst.

3.1 Finite Differences

We would like to approximate the derivative of a function which is defined on a discrete set of data

points x0, x1, . . . , xn. This can be readily accomplished using finite difference formulas which are

derived from Taylor series expansions. For example, the Taylor series expansion of the function

f(x) about the point xj can be used to construct an approximation of the first derivative at xj .

f(xj+1) = f(xj) + (xj+1 − xj)f ′(xj) +
(xj+1 − xj)2

2!
f ′′(xj) +

(xj+1 − xj)3

3!
f ′′′(xj) + · · · (3.1)

Solving for the derivative, f ′(xj), leads to

f ′(xj) =
f(xj+1) − f(xj)

∆xj
− ∆xj

2
f ′′(xj) − (∆xj)2

6
f ′′(xj) + · · · (3.2)

where ∆xj = xj+1 − xj is the mesh size. As a shorthand notation, we also use hj to indicate

the mesh size. When there is no subscript on ∆x or h the mesh spacing is uniform. Using the

shorthand notation, we can rewrite this formula as

fj+1 − fj

h
− f ′(xj) =

h

2
f ′′(xj) +

h2

6
f ′′′(xj) + · · · (3.3)

13

14 Chapter 3. Numerical Differentiation

In this form it is clear that the discrete terms on the left side of the equation represent the first

derivative with a certain amount of error which is given by the terms on the right side of the equals

sign. This error, called truncation error, depends on the mesh size. The order of accuracy of the

method is given by the error term which contains the lowest power of the step size. In this case

the order of accuracy is one which means that if the mesh size is reduced by a factor of 2 then the

error is also, approximately, reduced by a factor of 2. This finite difference formula can be written

in the summary form

f ′
j =

fj+1 − fj

h
+ O(h) (3.4)

which is referred to as the first-order forward difference. In a similar manner we can derive the

first derivative approximation

f ′
j =

fj − fj−1

h
+ O(h) (3.5)

which is called the first-order backward difference. Higher order schemes, which give greater

accuracy, can be derived by using Taylor series expansions of the function f at other locations. For

example, the central difference formula can be obtained by subtracting the following Taylor series

expansions:

fj+1 = fj + hf ′
j +

h2

2
f ′′

j +
h3

6
f ′′′

j + · · · (3.6)

fj−1 = fj − hf ′
j +

h2

2
f ′′

j − h3

6
f ′′′

j + · · · (3.7)

which leads to the second-order formula

f ′
j =

fj+1 − fj−1

2h
− h2

3
f ′′′

j + · · · (3.8)

This process can be extended to derive higher-order formulae such as the fourth-order accurate

expression

f ′
j =

fj−2 − 8fj−1 + 8fj+1 − fj+2

12h
+ O(h4) (3.9)

Formulae such as these are easily derived using the general procedure called a Taylor table. Sup-

pose that we want to construct the most accurate difference scheme that uses function values at j,

j + 1, and j + 2. Thus we want an expression of the form

f ′
j +

1
h

2∑

k=0
akfj+k = O(h?) (3.10)

Chapter 3. Numerical Differentiation 15

where ak are the coefficients that result from the linear combination of Taylor series expansions. It

is convenient to form the linear combination using the following Taylor table

fj f ′
j f ′′

j f ′′′
j

hf ′
j 0 h 0 0

a0fj a0 0 0 0

a1fj+1 a1 a1h a1
h2

2 a1
h3

6

a2fj+2 a2 2a2h a2
(2h)2

2 a2
(2h)3

6

By summing the columns in the Taylor table we obtain the sum indicated in equation (3.10),

multiplied through by h:

hf ′
j +

2∑

k=0
akfj+k = (a0 + a1 + a2)fj + (1 + a1 + 2a2)hf ′

j +

(
a1

2
+ 2a2)h2f ′′

j + (
a1

6
+

4a2

3
)h3f ′′′

j + · · · (3.11)

To get the highest accuracy requires that we set as many of the low-order terms to zero as is

possible. Since we have three coefficients, we can set the coefficients of the first three terms to

zero:

a0 + a1 + a2 = 0 (3.12a)

a1 + 2a2 = −1 (3.12b)

a1/2 + 2a2 = 0 (3.12c)

The solution to these equations is

a0 =
3
2

a1 = −2 a2 =
1
2

(3.13)

which results in the second-order finite difference

f ′
j =

−3fj + 4fj+1 − fj+2

2h
+

h2

3
f ′′′

j + · · · (3.14)

The proceeding discussion has been limited to first derivative approximations, however, the

same technique can be applied for second and higher derivatives. Consider the second derivative

16 Chapter 3. Numerical Differentiation

approximation using the points j − 1, j, j + 1. This leads to an approximation of the form

f ′′
j +

1
h2

2∑

k=0

akfj−1+k = O(h?) (3.15)

The Taylor table for this case is given by

fj f ′
j f ′′

j f ′′′
j f

(iv)
j

h2f ′′
j 0 0 h2 0 0

a0fj−1 a0 −a0h a0
h2

2 −a0
h3

6 a0
h4

24

a1fj a1 0 0 0 0

a2fj+1 a2 a2h a2
h2

2 a2
h3

6 a2
h4

24

Requiring that the column sums are zero leads to the following equations

a0 + a1 + a2 = 0 (3.16a)

−a0 + a2 = 0 (3.16b)

a0 + a2 = −2 (3.16c)

which has the solution

a0 = a2 = −1 a1 = 2 (3.17)

Due to symmetry, the fourth column also sums to zero (in fact all odd derivative terms will be zero)

so that the second derivative approximation given by

f ′′
j =

fj−1 − 2fj + fj+1

h2 +
h2

12
f

(iv)
j + · · · (3.18)

is second-order accurate.

3.2 Polynomial Interpolation and

Finite Differences

In Chapter 2 we derived the following expression for the Lagrangian interpolation polynomial of

degree n

f(x) =
n∑

j=0
fjLj(x) (3.19)

Chapter 3. Numerical Differentiation 17

If, for example, we consider the Lagrangian polynomial for quadratic interpolation then

f(x) = fj−1
(x − xj)(x − xj+1)

(xj−1 − xj)(xj−1 − xj+1)
+ fj

(x − xj−1)(x − xj+1)
(xj − xj−1)(xj − xj+1)

+

fj+1
(x − xj−1)(x − xj)

(xj+1 − xj−1)(xj+1 − xj)
(3.20)

If the mesh is uniform this can be rewritten as

f(x) = fj−1
(x − xj)(x − xj+1)

2h2 − fj
(x − xj−1)(x − xj+1)

h2 +

fj+1
(x − xj−1)(x − xj)

2h2 (3.21)

Taking the derivative of this expression and evaluating at xj yields

f ′
j =

fj+1 − fj−1

2h
(3.22)

which is identical to the second-order central difference formula that we derived using Taylor series

expansions. Similarly, the second derivative is given by

f ′′
j =

fj+1 − 2fj + fj−1

h2 (3.23)

which is again the classic central difference expression for the second derivative at xj . Finite

difference schemes that can be derived from the polynomial form (3.19) are called Lagrangian

approximations. It is often a very useful and powerful concept to think of finite difference schemes

in terms of their implied interpolation formula.

3.3 Padé Approximations

The procedure that we developed for obtaining finite difference formula using Taylor series can

be generalized to also include the derivatives at the same points. For example, if in addition to

f ′
j , fj−1, fj , fj+1 we also include f ′

j−1 and f ′
j+1 then we have the following expression for the

derivative

b0f
′
j−1 + f ′

j + b1f
′
j+1 +

1
h

2∑

k=0
akfj−1+k = O(h?) (3.24)

18 Chapter 3. Numerical Differentiation

and we can construct the following Taylor table

fj f ′
j f ′′

j f ′′′
j f

(iv)
j f

(v)
j

hf ′
j−1 0 b0h −b0h

2 b0
h3

2 −b0
h4

6 b0
h5

24

hf ′
j 0 1 0 0 0 0

hf ′
j+1 0 b1h b1h

2 b1
h3

2 b1
h4

6 b1
h5

24

a0fj−1 a0 −a0h a0
h2

2 −a0
h3

6 a0
h4

24 −a0
h5

120

a1fj a1 0 0 0 0 0

a2fj+1 a2 a2h a2
h2

2 a2
h3

6 a2
h4

24 a2
h5

120

Summing the columns of this table and setting equal to zero leads to the following system of

equations ⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 0 0

−1 0 1 1 1

1 0 1 −2 2

−1 0 1 3 3

1 0 1 −4 4

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a0

a1

a2

b0

b1

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0

−1

0

0

0

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.25)

which has the solution [a0, a1, a2, b0, b1] = 1
4 [3, 0, −3, 1, 1]. The method can be expressed as

f ′
j−1 + 4f ′

j + f ′
j+1 =

3
h

(fj+1 − fj−1) +
h4

30
f

(v)
j + · · · (3.26)

j = 1, 2, 3, . . . , n − 1 (3.27)

This expression for the derivative is fundamentally different from the previous expressions we

have derived. In equation (3.8) the first derivative is explicitly determined by neighboring function

values. However, in equation (3.26), the derivative at j depends implicitly on the derivative values

at j − 1 and j + 1 in addition to the neighboring function values. To compute the derivative

from equation (3.26) requires us to solve a tridiagonal system of equations. Since we only have

equations for the interior points, special treatment is required near the boundaries. Usually a lower

order one-sided difference is used to approximate f ′
0 and f ′

n.

By including the derivative values in addition to the function values, we have increased the

order of accuracy from second to fourth-order. Despite this increase, the scheme is still compact in

that it only requires information from the neighboring points, j −1 and j +1, although the scheme

is global in the sense that all the functional values are required to obtain the derivative at a given

point. The price that we pay for the increased accuracy is the need to solve a tridiagonal system

Chapter 3. Numerical Differentiation 19

of equations. However, since simple and efficient algorithms are available to solve such systems,

the Padé difference technique has become very popular for applications requiring extremely high

accuracy such as transitional and turbulent flows.

Just as the explicit finite difference schemes where shown to be equivalent to Lagrangian in-

terpolation, the Padé differencing schemes are equivalent to Hermitian interpolation. To construct

a polynomial for f(x), Hermitian interpolation uses both the values of the function and its deriva-

tives. For example,

f(x) =
n∑

j=0
fjLj(x) +

n∑

j=0
f ′

jHj(x) (3.28)

is a Hermitian interpolation using the first derivatives. Higher order derivatives can also be in-

cluded depending on the application. The family of Hermitian polynomials includes cubic spline

approximations as discussed in Section 2.2. In fact, the first derivative expression (3.26), derived

above, is equivalent to evaluating the first derivative using a cubic spline interpolation. Additional

details on Hermitian polynomials and higher-order splines can be found in many texts on numerical

methods.

Chapter 4

Numerical Integration

The goal of numerical integration or quadrature is to estimate the integral of the function f in the

interval [a, b].

I =
∫ b

a
f(x)dx (4.1)

The function may be defined analytically or only on a set of discrete data points x0 = a, x1, x2,

. . ., xn = b. Whichever the case, we wish to use the discrete data to convert the integral into a

finite sum of the form

I =
∫ b

a
f(x)dx ≈

n∑

j=0
wjf(xj) (4.2)

The choice of weights, wj , will influence the accuracy of the approximation.

Two popular choices for numerical integration are trapezoidal rule and Simpson’s rule. For one

interval the trapezoidal rule is given by

∫ xj+1

xj

f(x)dx =
∆x

2
(fi + fi+1) (4.3)

and for the entire interval, the trapezoidal rule becomes

I ≈ ∆x

⎛

⎝f0

2
+

fn

2
+

n−1∑

j=1
fj

⎞

⎠ (4.4)

where ∆x = h = xj+1 − xj and uniform spacing has been assumed. A more accurate method of

approximating the integral is Simpson’s Rule which is given by

I ≈ ∆x

3

⎛

⎜⎝f0 + fn + 4
n−1∑

j=1
j=odd

fj + 2
n−2∑

j=2
j=even

fj

⎞

⎟⎠ (4.5)

Note that Simpson’s rule requires that the number of points, (n + 1), be odd.

21

22 Chapter 4. Numerical Integration

xj xj+1

f(x)

xj

Figure 4.1: Midpoint rule

4.1 Analysis of Integration Errors

As in the case of interpolation and differentiation, we are interested in determining the error, or

more precisely, the order of accuracy of integration scheme.

4.1.1 Midpoint Rule

Let’s begin with the midpoint (or rectangle) rule for the interval [xj , xj+1]

∫ xj+1

xj

f(x)dx ≈ hjf(x̄j) (4.6)

where x̄j = (xj + xj+1)/2 is the midpoint of the interval. We can replace the integrand with its

Taylor series expansion about x̄j

f(x) = f(x̄j) + (x − x̄j)f ′(x̄j) +
(x − x̄j)2

2
f ′′(x̄j) +

(x − x̄j)3

6
f ′′′(x̄j) + . . . (4.7)

yielding

∫ xj+1

xj

f(x)dx = hjf(x̄j) +
1
2
(x − x̄j)2

∣∣∣
xj+1

xj

f ′(x̄j) +
1
6
(x − x̄j)3

∣∣∣
xj+1

xj

f ′′(x̄j) + . . . (4.8)

Terms with even powers of (x − x̄j) vanish due to symmetry so that we are left with

∫ xj+1

xj

f(x)dx = hjf(x̄j) +
h3

j

24
f ′′(x̄j) +

h5
j

1920
f (iv)(x̄j) + . . . (4.9)

Thus, midpoint rule is third order accurate for one interval.

To obtain the integral for the entire domain we sum both sides of equation (4.9) assuming

Chapter 4. Numerical Integration 23

uniform spacing

I =
n−1∑

j=0

∫ xj+1

xj

f(x)dx = h
n−1∑

j=0
f(x̄j) +

h3

24

n−1∑

j=0
f ′′(x̄j) + . . . (4.10)

The Mean Value Theorem applied to summations says that there exists a point, ξ, in the interval

[a, b], such that
n−1∑

j=0
f ′′(x̄j) = nf ′′(ξ) (4.11)

Since n = (b − a)/h we obtain

I = h
n−1∑

j=0
f(x̄j) + (b − a)

h2

24
f ′′(ξ) + . . . (4.12)

Thus, we conclude that midpoint rule is second order accurate over the entire interval.

4.1.2 Trapezoidal Rule

We can perform a similar analysis for the trapezoidal rule starting from equation (4.9). First let’s

form Taylor series expansions for f(xj) and f(xj+1) about the midpoint x̄j .

f(xj) = f(x̄j) − hj

2
f ′(x̄j) +

h2
j

8
f ′′(x̄j) − h3

j

48
f ′′′(x̄j) + · · · (4.13)

f(xj+1) = f(x̄j) +
hj

2
f ′(x̄j) +

h2
j

8
f ′′(x̄j) +

h3
j

48
f ′′′(x̄j) + · · · (4.14)

Adding these two expansions and dividing by two yields

f(xj) + f(xj+1)
2

= f(x̄j) +
h2

j

8
f ′′(x̄j) +

h4
j

384
f (iv)(x̄j) + · · · (4.15)

Solving for f(x̄j) and substituting into equation (4.9) we obtain

∫ xj+1

xj

f(x)dx = hj
f(xj) + f(xj+1)

2
− 1

12
h3

jf
′′(x̄j) − 1

480
h5

jf
(iv)(x̄j) + · · · (4.16)

which demonstrates that trapezoidal rule is also third order accurate over a single interval. Note

that the coefficient of the leading order term is twice in magnitude but of opposite sign compared

to the midpoint rule. Assuming a uniform mesh and using the mean value theorem we find that

24 Chapter 4. Numerical Integration

over the entire domain, the trapezoidal rule leads to

I =
h

2

⎛

⎝f(a) + f(b) + 2
n−1∑

j=1
f(xj)

⎞

⎠− (b − a)
h2

12
f ′′(ξ) + . . . (4.17)

Thus, the trapezoidal rule is also second order accurate over the entire domain.

4.1.3 Trapezoidal Rule with End-Corrections

If we know the derivatives of the integrand at the end points, it is possible to increase the accuracy

of the trapezoidal rule from second order to fourth order. This is accomplished by using the second

order finite difference formula for f ′′(x̄j) in equation (4.16).

Ij = hj
fj + fj+1

2
− h3

j

12
f ′

j+1 − f ′
j

hj
+ O(h5

j) (4.18)

If we consider a uniform mesh then using the mean value theorem

I =
h

2

n−1∑

j=0
(fj + fj+1) − h2

12

n−1∑

j=0

(
f ′

j+1 − f ′
j

)
+ O(h4) (4.19)

All terms in the second summation cancel except the end points leaving

I =
h

2

n−1∑

j=0
(fj + fj+1) − h2

12
(f ′(b) − f ′(a)) + O(h4) (4.20)

As advertised, trapezoidal rule with end-correction is fourth order accurate as long as the deriva-

tives at the end points are known.

4.1.4 Simpson’s Rule

One interval Simpson’s Rule covers [xj , xj+2] with the midpoint at xj+1. Simpson’s formula in

equation (4.5) can be written as

S(f) =
2
3
M(f) +

1
3
T (f) (4.21)

where M(f) is the midpoint rule and T (f) is the trapezoidal rule. Combining equations (4.9) and

(4.16) according to this formula leads to an expression that is fifth order accurate over a single

interval and thus fourth order accurate for the whole domain.

Chapter 4. Numerical Integration 25

4.2 Richardson Extrapolation and Romberg Integration

The basic ideal of Richardson extrapolation is that a more accurate numerical solution can be

obtained by combining less accurate solutions if you know the form of the truncation error. In

premise, this method can be applied to any numerical method: integration, differentiation, interpo-

lation, etc. As a particular example, we will use Richardson extrapolation to improve the accuracy

of the integral

I =
∫ b

a
f(x)dx (4.22)

evaluated using the trapezoidal rule.

From the error analysis of the trapezoidal rule we have the following expression for the integral

I =
h

2

⎡

⎣f(a) + f(b) + 2
n−1∑

j=1
fj

⎤

⎦+ c1h
2 + c2h

4 + c3h
6 + . . . (4.23)

If we let

Ĩ1 =
h

2

⎡

⎣f(a) + f(b) + 2
n−1∑

j=1
fj

⎤

⎦ (4.24)

then the trapezoidal rule can be rewritten as

Ĩ1 = I − c1h
2 − c2h

4 − c3h
6 − . . . (4.25)

If we evaluate the integral with half the step size h2 = h/2 then

Ĩ2 = I − c1
h2

4
− c2

h4

16
− c3

h6

64
− . . . (4.26)

By taking a linear combination of I1 and I2, we can eliminate the O(h2) terms

4Ĩ2 − Ĩ1

3
= I +

1
4
c2h

4 +
5
16

c3h
6 + . . . (4.27)

which yields a fourth order approximation for I . This procedure is the essence of Richardson

extrapolation – two estimates of I have been used to obtain a more accurate estimate. We can

continue by evaluating I using h3 = h/4 to give

Ĩ3 = I − c1
h2

16
− c2

h4

256
− c3

h6

4096
− . . . (4.28)

26 Chapter 4. Numerical Integration

Taking a linear combination of I2 and I3 to remove the O(h2) terms yields

4Ĩ3 − Ĩ2

3
= I +

1
64

c2h
4 +

5
1024

c3h
6 + . . . (4.29)

A linear combination of equations (4.27) and (4.29) can be formed to eliminate the O(h4) terms

resulting is a sixth order accurate estimate. The procedure can be continued indefinitely and when

applied to the trapezoidal rule, this algorithm is called Romberg integration. The following diagram

summaries the process of Richardson extrapolation.

O(h2) O(h4) O(h6)

Ĩ1

Ĩ2

Ĩ3

4Ĩ2−Ĩ1
3

4Ĩ3−Ĩ2
3

�
����

�
����

�
����

4.3 Adaptive Quadrature

If the function to be integrated varies rapidly in some regions and slowly in others, the use of a

uniform mesh size over the domain can be quite inefficient. Adaptive quadrature methods auto-

matically select the mesh size so that the result meets some user prescribed accuracy requirement.

Mathematically, we say that for a minimum number of function evaluations we would like a nu-

merical estimate, Ĩ, of the integral such that

∣∣∣∣∣Ĩ −
∫ b

a
f(x)dx

∣∣∣∣∣ ≤ ε (4.30)

where ε is a user supplied error tolerance.

As an example, consider Simpson’s rule as the base method over the domain [a, b] which is

divided into intervals [xj , xj+1]. Dividing this interval into two panels and using Simpson’s rule

leads to

S
(1)
j =

hj

6

[

f(xj) + 4f
(

xj +
hj

2

)

+ f(xj + hj)
]

(4.31)

If we further divide the interval into four panels then we obtain the following estimate for the

Chapter 4. Numerical Integration 27

integral

S
(2)
j =

hj

12

[

f(xj) + 4f
(

xj +
hj

4

)

+ 2f
(

xj +
hj

2

)

+ 4f
(

xj +
3hj

4

)

+ f(xj + hj)
]

(4.32)

The idea is to compare the two estimates, S
(1)
j and S

(2)
j to obtain as estimate for the accuracy of

S
(2)
j . If the accuracy of S

(2)
j is acceptable then we move to the next interval, otherwise we further

subdivide the current interval until the accuracy requirement is met.

Let Ij denote the exact integral over the interval [xj , xj+1] and using the error analysis we know

that

Ij − S
(1)
j = ch5

jf
(iv)

(

xj +
hj

2

)

+ . . . (4.33)

and

Ij − S
(2)
j = c

(
hj

2

)5 [

f (iv)

(

xj +
hj

4

)

+ f (iv)

(

xj +
3hj

4

)]

+ . . . (4.34)

Expanding each of the terms in square brackets in a Taylor series about the point (xj + hj/2)

f (iv)

(

xj +
hj

4

)

= f (iv)

(

xj +
hj

2

)

− hj

4
f (v)

(

xj +
hj

2

)

+ . . . (4.35)

f (iv)

(

xj +
3hj

4

)

= f (iv)

(

xj +
hj

2

)

+
hj

4
f (v)

(

xj +
hj

2

)

+ . . . (4.36)

allows us to rewrite equation (4.34) as

Ij − S
(2)
j =

1
16

ch5
j

[

f (iv)

(

xj +
hj

2

)]

+ . . . (4.37)

Subtracting (4.33) from (4.37) yields

S
(2)
j − S

(1)
j =

15
16

ch5
jf

(iv)

(

xj +
hj

2

)

+ . . . (4.38)

Comparing equations (4.37) and (4.38) we conclude that the error in S
(2)
j is approximately 1/15

the difference between S
(2)
j and S

(1)
j . Returning to our global error requirement in equation (4.30),

if
1
15

∣∣∣S(2)
j − S

(1)
j

∣∣∣ ≤ hj

b − a
ε (4.39)

then S
(2)
j is sufficiently accurate on the interval [xj , xj+1] and we can move on to the next interval.

Otherwise, the interval must be subdivided and the process repeated.

28 Chapter 4. Numerical Integration

Adaptive quadrature is similar to Richardson extrapolation in that the form of the truncation

error is used to obtain an estimate of the accuracy of the method without knowing the exact solu-

tion. Similar adaptive algorithms can be developed for other quadrature methods such as midpoint

and trapezoidal rules.

4.4 Gauss Quadrature

Up to this point we have selected the values of the weights, wj , in equation (4.2) to give the best

approximation of the integral, I , assuming that the mesh points, xj , are given. In Gauss quadrature,

we extend upon this idea by selecting both the weights and the location of the mesh points to obtain

the best accuracy. Here the measure of accuracy will be the highest degree polynomial that can be

integrated exactly. By examining the form of the leading error term, it is easy to see that trapezoidal

rule integrates a linear function exactly and Simpson’s rule integrates a cubic exactly. We will see

that Gauss quadrature integrates a polynomial of degree 2n + 1 exactly, using only n + 1 points.

Let f be a polynomial of degree 2n + 1 and suppose that we interpolate f by an nth order

Lagrange polynomial, P , defined by the points x0, x1, x2, . . . , xn. Using Lagrange interpolation

yields

P (x) =
n∑

j=0
f(xj)L

(n)
j (x) (4.40)

If f had been a degree n polynomial then this representation would be exact. However, since f is a

2n+1 degree polynomial, the difference, f(x)−P (x), is also a polynomial of degree 2n+1 which

happens to vanish at the points x0, x1, x2, . . . , xn. Thus we can write the difference f(x) − P (x)

as

f(x) − P (x) = F (x)
n∑

l=0

qlx
l (4.41)

where F (x) is an n + 1 order polynomial of the form

F (x) = (x − x0)(x − x1)(x − x2) · · · (x − xn) (4.42)

Integrating equation (4.41) leads to

∫
f(x)dx =

∫
P (x)dx +

∫
F (x)

n∑

l=0
qlx

ldx (4.43)

Chapter 4. Numerical Integration 29

By selecting the locations of the points x0, x1, x2, . . . , xn we can demand that

∫
F (x)xldx = 0 for l = 0, 1, 2, . . . , n (4.44)

Choosing the abscissa in this manner eliminates the last term in equation (4.43) leading to

∫
f(x)dx =

∫
P (x)dx =

n∑

j=0
f(xj)wj (4.45)

where the weights are given by

wj =
∫

L(n)
n (x)dx (4.46)

By construction, F (x) is a polynomial of degree n + 1 that is orthogonal to all polynomials

of degree n or less, and the points x0, x1, x2, . . . , xn are the zeros of this polynomial. If x varies

between -1 and 1, then F is called a Legendre polynomial. Legendre polynomials are orthonormal

meaning that ∫ 1

−1
Fn(x)Fm(x)dx = δnm (4.47)

where Fn is the Legendre polynomial of degree n.

The zeros and weights for the Legendre polynomials are documented in Gauss quadrature

tables (see the CRC Standard Mathematical Tables). Note that it is always possible to transform

the interval a ≤ x ≤ b into −1 ≤ ξ ≤ 1 by the transformation

x =
b + a

2
+

b − a

2
ξ (4.48)

To use Legendre-Gauss quadrature tables to evaluate the integral

∫ b

a
f(x)dx (4.49)

change the independent variable to ξ and determine the weights, wj, and the points, ξj, from the

tables for the given value of n (in the tables n denotes the number of points, not n+1). The integral

is then approximated by
b − a

2

n∑

j=1
f

(
b + a

2
+

b − a

2
ξj

)

wj (4.50)

Note that the values of the weights are symmetric about ξ = 0.

Although Legendre-Gauss quadrature is the most versatile of the Gauss quadrature methods,

30 Chapter 4. Numerical Integration

there are also special purpose formulae for some common integral forms:

∫ ∞

0
e−xf(x)dx use Laguerre-Gauss quadrature (4.51)

∫ ∞

0
e−x2

f(x)dx use Hermite-Gauss quadrature (4.52)

∫ ∞

0

f(x)√
1 − x2

dx use Chebyshev-Gauss quadrature (4.53)

and values for the abscissa and weights for these quadrature formulae also appear in standard Gauss

quadrature tables.

Chapter 5

Ordinary Differential Equations

Many physical processes in science and engineering can be mathematically expressed in terms of

Ordinary Differential Equations (ODE). You may recall that a high-order ODE can be converted

to a system of first ODE’s. For example, the equation

d2u

dt2
+

du

dt
= f(u, t) (5.1)

can be rewritten as

w − du

dt
= 0 (5.2)

dw

dt
+ w = f(u, t) (5.3)

which is a system of two coupled, first-order ODE’s. The extension to higher-order ODE’s is

obvious. As we will see in the next chapter, the numerical solution of Partial Differential Equations

(PDE) can also be expressed as the solution of a coupled system of first-order ODE’s. Thus,

the emphasis here will be on the solution of first-order ODE’s and, as will be shown below, the

extension to systems of first-order equation will be straight forward.

ODE can be divided into two classes depending on the form of the boundary conditions. If all

the boundary data are prescribed at one value of the independent variable (say t = 0) then the ODE

is called an initial value problem.

u′′ = f(t, y) u(0) = u0 u′(0) = u′
0 (5.4)

If, on the other hand, data are prescribed at more than one value of t then the problem is a boundary

value problem. If should be obvious that boundary value problems require at least a second-order

differential equation, such as

u′′ = f(t, u, u′) u(0) = u0 u(L) = uL (5.5)

where f is an arbitrary function. Of the two types of ODE problems, initial value problems are, in

some sense, more fundamental since algorithms for boundary value problems are often built using

31

32 Chapter 5. Ordinary Differential Equations

algorithms for initial value problems. Thus, our discussion begins with the first-order initial value

problem.

5.1 Initial Value Problems

Consider the differential equation

du

dt
= u′ = f(t, u) u(0) = u0 (5.6)

The objective of our numerical method is to obtain the solution at time tn+1 = tn + ∆t given

the solution for 0 ≤ t ≤ tn. In the following sections we will introduce and analyze a variety of

numerical methods for solving this equation. As always, we will pay particular attention to the

accuracy of the methods. In addition, we will see that some numerical methods for the solution of

ODE can become unstable under certain circumstances.

5.1.1 Taylor Series Methods

Expanding the solution to equation (5.6) at tn+1 about the solution at tn yields

un+1 = un + hu′
n +

h2

2
u′′

n +
h3

6
u′′′

n + . . . (5.7)

where h = ∆t. We can use the differential equation to express u′
n in this equation in terms of

f(tn, un).

u′
n = f(tn, un) (5.8)

The chain rule can be used to express the higher derivatives in equation (5.7) in terms of the

function f . For example,

u′′ =
du

dt
=

df

dt
=

∂f

∂t
+

∂f

∂u

du

dt
= f,t + ff,u (5.9)

Similarly for the third derivative

u′′′ =
∂

∂t
[f,t + ff,u] +

∂

∂u
[f,t + ff,u] f = f,tt + 2ffut + f,tf,u + ff 2

,u + f 2f,uu (5.10)

Clearly, the number of terms in the derivative expressions increases rapidly making the method

generally impractical for higher than second order.

Chapter 5. Ordinary Differential Equations 33

Truncating after the first two terms, we obtain the explicit Euler (or simply Euler) scheme

un+1 = un + hf(tn, un) (5.11)

To compute the numerical solution using this method, one starts with the initial condition, u 0, and

simply marches using this formula to obtain u1, u2, etc. From the Taylor series expansion we see

that the Euler scheme is second-order accurate over one time step. However, like the integration

schemes already discussed, the error in advancing from the initial condition to the final time,

T , is only first order. Thus, this scheme is often not accurate enough for practical engineering

applications. However, due to its simplicity we will analyze this method extensively, comparing

its characteristics to more complicated schemes.

To obtain higher accuracy, we must supply more information about the function f . In the Taylor

series method this is accomplished by including derivatives of f . Another way of obtaining higher

accuracy is to use intermediate values of f , between tn and tn+1 (not including tn+1). This leads to

the family of Runge–Kutta schemes. Higher accuracy can also be obtained by using information

from previous time steps, say tn−1, tn−2, etc. This leads to the family of Multi-Step methods.

All the methods introduced so far are explicit in that they do not involve f evaluated at tn+1.

Methods which do include information at tn+1 are called implicit. Since f may be a nonlinear

function of u, implicit methods often require the solution of non-linear equations at each time step.

Although this makes implicit methods more computationally expensive per time step, implicit

methods can offer the advantage of numerical stability.

5.1.2 Numerical Stability and the Model Equation

Even though a numerical scheme may yield accurate solutions to an ODE such as

u′ = f(u, t) (5.12)

it is possible that the numerical solution can become unbounded even though the exact solution

is bounded for all time. In stability analysis we wish to determine the conditions, in terms of the

parameters of the numerical method (primarily the time step, h), for which the numerical solution

is bounded. The stability characteristics of numerical methods for ODE can be divided into the

following three categories:

1. Stable: the numerical solution remains bounded for any choice of numerical parameters.

34 Chapter 5. Ordinary Differential Equations

2. Unstable: the numerical solution becomes unbounded for any choice of parameters.

3. Conditionally stable: there exist certain parameters for which the numerical solution is

bounded.

Although equation (5.12) may be nonlinear depending on the form of f(u, t), it is necessary,

but not sufficient, for the numerical solution to (5.12) to be linearly stable. To examine the linear

stability of (5.12) we expand f(u, t) in a two-dimensional Taylor series:

f(u, t) = f(u0, t0) + (t − t0)
∂f

∂t
(u0, t0) + (u − u0)

∂f

∂u
(u0, t0) +

1
2

[

(t − t0)2∂2f

∂t2
+ 2(t − t0)(y − y0)

∂2f

∂t∂u
+ (u − u0)2∂2f

∂u2

]

(u0,t0)

+ . . . (5.13)

which can be formally written as

u′ = λu + α1 + α2t + . . . (5.14)

where λ, α1, and α2 are constants. In many instances, the inhomogeneous terms in (5.14) do not

affect the stability of the solution so that we can consider the model problem

u′ = λu (5.15)

rather than the full problem (5.12). This greatly simplifies the stability analysis of numerical

methods. However, there are situations where the stability characteristics of the nonlinear problem

are not well predicted by the linear analysis. In these cases, numerical experimentation is necessary

to determine the actual stability characteristics.

With this caveat, we proceed to consider the stability of various numerical methods applied to

the model equation (5.15). For generality, we allow λ to be complex

λ = λr + iλi = ξ + iω (5.16)

Doing so allows us to readily extend our analysis to systems of ODE’s and PDE’s. As an example,

consider the second-order ODE

u′′ + ω2u = 0 (5.17)

The exact solution is sinusoidal

u = c1 cos ωt + c2 sin ωt (5.18)

Chapter 5. Ordinary Differential Equations 35

We can convert this second order equation into a system of two first order equations of the form

⎧
⎨

⎩
u1

u2

⎫
⎬

⎭

′

=

⎡

⎣ 0 1

−ω2 0

⎤

⎦

⎧
⎨

⎩
u1

u2

⎫
⎬

⎭ (5.19)

The reader is encouraged to verify that the eigenvalues of the 2 × 2 matrix are λ = ±iω. From the

theory of linear algebra, we can diagonalize the matrix

A =

⎡

⎣ 0 1

−ω2 0

⎤

⎦ (5.20)

with the matrix of eigenvectors, S

A = S−1ΛS (5.21)

which results in the uncoupled set of equations

z′ = Λz (5.22)

where

z = S

⎧
⎨

⎩
u1

u2

⎫
⎬

⎭ (5.23)

and Λ is a diagonal matrix with the eigenvalues of A on the diagonal. The component equations

can be written as

z′
1 = iωz1, z′

2 = iωz2 (5.24)

This example demonstrates that higher-order ODE or systems of ODE can be reduced to uncoupled

ODE which have the form of the model problem (5.15) but with complex λ. In general, the

imaginary part of λ results in oscillatory solutions of the form

e±iωt (5.25)

while the sign of the real part of λ determines whether the solution grows or decays. In our stability

analysis of the model equation, we will only be concerned with cases for which λr ≤ 0 meaning

that the amplitude of the exact solution either is constant or decays.

36 Chapter 5. Ordinary Differential Equations

5.1.3 Explicit Euler

We begin our stability analysis by applying the Euler method

un+1 = un + hf(un, tn) (5.26)

to the model equation (5.15) which leads to

un+1 = un + λhun = (1 + λh)un (5.27)

Thus the solution at time step n can be written as

un = (1 + λh)nu0 (5.28)

For complex λ, this can be written as

un = (1 + λrh + iλih)nu0 = σnu0 (5.29)

where σ is called the amplification factor. For the numerical solution to be stable (i.e. remain

bounded) requires that

|σ| ≤ 1 (5.30)

Since we require that the exact solution decays (λr ≤ 0), the region of stability for the exact

solution in the (λrh – λih) plane is the left half plane, shown in figure 5.1

Region of
stability for
the exact
solution

λih

λrh

Figure 5.1: Stability diagram for the exact solution to the model equation.

However, when the Euler method is applied to the model problem, the numerical solution is

only stable within the circle

(1 + λrh)2 + (λih)2 = 1 (5.31)

Chapter 5. Ordinary Differential Equations 37

as shown in figure 5.2. For any value of λh in the left hand plane and outside this circle, the

numerical solution will blow-up while the exact solution will decay. Thus, the Euler method is

Region of
stability for
Explicit Euler

λih

λrh

-2.0

Figure 5.2: Stability diagram for explicit Euler scheme applied to the model equation.

conditionally stable. A stable numerical solution requires that we reduce h so that λh falls within

the circle shown in figure 5.2. If λ is real, then the condition for numerical stability is

h ≤ 2
|λ| (5.32)

Notice that the circle in figure 5.2 is only tangent to the imaginary axis. This means that the explicit

Euler method is always unstable, regardless of the value of h, when λ is purely imaginary. As we

will see in the following chapter, this renders the explicit Euler method unsuitable for problems

which involve pure convection.

It is interesting to see what happens to the solution when the method becomes unstable. If λ is

real and the method is unstable, then the following inequality must be true

|1 + λh| > 1 (5.33)

which, since λ > 0, means that (1 + λh) is negative with magnitude greater than 1. Since

un = (1 + λh)nu0 (5.34)

we see that the numerical solution oscillates with a change of sign at every time step. This type of

behavior is indicative of numerical instability.

38 Chapter 5. Ordinary Differential Equations

5.1.4 Implicit or Backward Euler

The next scheme we will analyze is the implicit Euler method given by the formula

un+1 = un + hf(un+1, tn+1) (5.35)

This scheme is identical to explicit Euler, except that f is now evaluated at the new time step,

n + 1. If f is non-linear, we must solve a non-linear algebraic equation at each time step to

obtain the solution at n + 1. Thus, the computational cost per time step can be much greater than

that of explicit Euler. However, implicit Euler has the advantage that it is unconditionally stable.

Furthermore, the need for iteration at each time step can be avoided by linearization, as shown

below.

Applying implicit Euler to the model equation (5.15) yields

un+1 = un + λhun+1 (5.36)

Solving for un+1, we obtain

un+1 = (1 − λh)−1un = σnu0 (5.37)

Considering complex λ, we have

σ =
1

(1 − λrh) − iλih
= Aeiθ (5.38)

where

A =
1

√
(1 − λrh)2 + (λih)2

θ = − tan−1 λih

1 − λrh
(5.39)

Since λr ≤ 0, the modulus of σ is

|σ| = |A||eiθ| = A < 1 (5.40)

Thus, we can conclude that implicit Euler is unconditionally stable. Unconditional stability is

typical of implicit methods (although there are some implicit methods which are only conditionally

stable). The price we pay is the higher computational cost per time step.

It is important to realize that numerical stability does not imply accuracy. A method can be

stable but inaccurate. From the point of view of stability, our objective is to use the largest time

step, h, possible to reach the final time t = T . Large time steps lead to less function evaluations

and hence lower computational cost. However, it should come to no surprise that the larger the

Chapter 5. Ordinary Differential Equations 39

step size the less accurate the solution.

5.1.5 Numerical Accuracy: Magnitude and Phase Errors

The exact solution to the model problem

u′ = λu (5.41)

is

u(t) = u0e
λt = u0(eλh)n (5.42)

while the numerical solution is of the form

un = u0σ
n (5.43)

By comparing to the amplification factor σ to the exact solution, we can determine the order of

accuracy of the method. For this purpose, we can expand the exponential term in the exact solution

in a Taylor series

eλh = 1 + λh +
λ2h2

2
+

λ3h3

6
+ . . . (5.44)

For example, the amplification factor for Euler is

σ = 1 + λh (5.45)

while the amplification factor for implicit Euler is

σ =
1

1 − λh
= 1 + λh + λ2h2 + λ3h3 + . . . (5.46)

Both methods only reproduce the first two terms of the Taylor series expansion of the exponential

in the exact solution. Thus both methods are second-order accurate for one time step, but (similar

to numerical integration), the methods are globally only first order. We will call a method α order

accurate if the expansion of its amplification factor matches the terms up to and including the

λαhα/α! term in the exponential expansion.

In the case of oscillatory solutions, the order of accuracy by itself is not very informative. If

we consider the model problem with λ pure imaginary

u′ = iωu u(0) = 1 (5.47)

40 Chapter 5. Ordinary Differential Equations

then the exact solution is eiωt which is oscillatory. The frequency of the oscillation is ω and the

amplitude is 1. The numerical solution with explicit Euler is

un = σnu0 (5.48)

where σ = 1 + iωh. Clearly |σ| > 1 which confirms that Euler is unstable for purely imaginary λ.

Since σ is a complex number we can write it as

σ = |σ|eiθ (5.49)

where

θ = tan−1 ωh = tan−1 Im(σ)
Re(σ)

(5.50)

The phase error is then defined as

PE = ωh − θ = ωh − tan−1 ωh (5.51)

Using the power series for tan−1

tan−1 ωh = ωh − (ωh)3

3
+

(ωh)5

5
− (ωh)7

7
+ . . . (5.52)

we have

PE =
(ωh)3

3
+ . . . (5.53)

which corresponds to a phase lag. This phase error occurs at each time step, so the the phase error

after n time steps is nPE.

5.1.6 Trapezoidal Method

Formally integrating equation (5.6) over one time step leads to

un+1 = un +
∫ tn+1

tn
f(u, τ)dτ (5.54)

If we approximate the integral using the trapezoidal rule then

un+1 = un +
h

2
[f(un+1, tn+1) + f(un, tn)] (5.55)

Chapter 5. Ordinary Differential Equations 41

This is the trapezoidal method for the solution of ODE. When this method is applied to PDEs (see

Chapter 6) it is commonly called the Crank–Nicholson method.

Applying the trapezoidal method to the model equation gives

un+1 = un +
h

2
[λun+1 + λun] (5.56)

which we note is just the average of the explicit and implicit Euler schemes. Solving for un+1, we

obtain

un+1 =
1 + λh

2

1 − λh
2

un (5.57)

and expanding the amplification factor leads to

σ =
1 + λh

2

1 − λh
2

= 1 + λh +
λ2h2

2
+

λ3h3

4
+ . . . (5.58)

which demonstrates that the method is globally second order accurate. This additional accuracy is

obtained at virtually no extra cost over implicit Euler (Moral: don’t use implicit Euler).

To examine the stability properties of the trapezoidal method, we compute the modulus of σ

for complex λ.

σ =
1 + λrh

2 + iλih
2

1 − λrh
2 − iλih

2

(5.59)

Both the numerator and denominator are complex and can be written, respectively, as Aeiθ and

Beiφ where

A =

√√√√
(

1 +
λrh

2

)2

+
(

λih

2

)2

(5.60)

B =

√√√√
(

1 − λrh

2

)2

+
(

λih

2

)2

(5.61)

Thus,

σ =
A

B
ei(θ−φ) (5.62)

or

|σ| =
A

B
(5.63)

Since we are only interested in the case where λr ≤ 0 and in this case A < B it follows that

|σ| < 1 (5.64)

42 Chapter 5. Ordinary Differential Equations

making the trapezoidal method unconditionally stable. Note, however, that for real and negative λ,

lim
h→∞

σ = −1 (5.65)

which shows that the numerical solution oscillates between -1 and 1 for large h. Although the

solution will not blow-up, it is very inaccurate for large h.

Now lets consider the case of oscillatory solutions for which λ = iω. In this case A = B and

therefore

|σ| = 1 (5.66)

indicating that there is no amplitude error for trapezoidal rule. Since

σ = e2iθ θ = tan−1

(
ωh

2

)

(5.67)

the phase error is given by

PE = ωh − 2 tan−1 ωh

2
= ωh − 2

[
ωh

2
− (ωh)3

24

]

+ . . . =
(ωh)3

12
+ . . . (5.68)

which is approximately a factor of four better than explicit Euler.

5.1.7 Linearization for Implicit Methods

The main difficultly with implicit methods is that they generally require the solution of a non-linear

algebraic equation as each time step. This is most often accomplished using a Newton–Raphson

type iteration. However, consistent with the accuracy of the numerical method, iteration can be

avoided by the linearization technique. Consider the ODE

u′ = f(u, t) (5.69)

where f is a non-linear function of u. Using the trapezoidal method to solve this equation yields

un+1 = un +
h

2
[f(un+1, tn+1) + f(un, tn)] + O(h3) (5.70)

Chapter 5. Ordinary Differential Equations 43

Solving for un+1 would require solving a non-linear equation. However if we replace f(un+1, tn+1)

with the first two terms of the Taylor series expansion

f(un+1, tn+1) = f(un, tn+1) + (un+1 − un)
∂f

∂u

∣∣∣
un

+
1
2
(un+1 − un)2∂2f

∂u2

∣∣∣
un

+ . . . (5.71)

and note that

un+1 − un = O(h) (5.72)

then we are left with

un+1 = un +
h

2

[

f(un, tn+1) + (un+1 − un)
∂f

∂u

∣∣∣∣∣
un

+ f(un, tn)
]

+ O(h3) (5.73)

where the order of accuracy has not been affected. Rearranging and solving for un+1 yields

un+1 = un +
h

2

⎛

⎜⎝
f(un, tn+1) + f(un, tn)

1 − h
2

∂f
∂u

∣∣∣
un

⎞

⎟⎠ (5.74)

Remarks

1. The solution can proceed without iteration and with retention of global second order accu-

racy.

2. This procedure is identical to taking only one iteration of a Newton–Raphson algorithm.

3. Since our stability analysis was linear, we have not lost linear stability.

5.1.8 Runge–Kutta Methods

So far all the numerical methods we have examined only used function evaluations at n and n + 1.

To increase the order of accuracy requires us to supply more information about the function f .

One way of achieving this is to introduce intermediate points between tn and tn+1 and include

function evaluations at these points in our numerical method. This approach leads to the family of

Runge–Kutta methods. Of course, the additional function evaluations result in higher cost per time

step, however, it turns out that both the accuracy and stability properties are improved.

We begin with the general form of a second-order Runge–Kutta method for solving

u′ = f(u, t) (5.75)

44 Chapter 5. Ordinary Differential Equations

The solution at time step tn+1 is given by

un+1 = un + γ1k1 + γ2k2 (5.76)

where the functions k1 and k2 are defined sequentially as

k1 = hf(un, tn) (5.77a)

k2 = hf(un + βk1, tn + αh) (5.77b)

and α, β, γ1, and γ2 are constants that need to be determined to ensure the highest possible order

of accuracy for the method. The accuracy is established by considering the Taylor series expansion

of u(tn+1)

u(tn+1) = un + hu′
n +

h2

2
u′′

n + . . . (5.78)

But, from the ODE we have

u′
n = f(un, tn) (5.79)

and using the chain rule we have already obtained in section 5.1.1

u′′
n = f,t + ff,u (5.80)

Thus,

un+1 = un + hf(un, tn) +
h2

2
[f,t(un, tn) + f(un, tn)f,u(un, tn)] + O(h3) (5.81)

A two-dimensional Taylor series expansion of k2 in equation (5.77b) leads to

k2 = h[f(un, tn) + βk1f,u(un, tn) + αhf,t(un, tn) + . . .] (5.82)

Using this equations and (5.77a) in (5.76) yields

un+1 = un + (γ1 + γ2)hf(un, tn) + γ2βh2f(un, tn)f,u(un, tn) + γ2αh2f,t(un, tn) + . . . (5.83)

Comparing (5.81) and (5.83) and matching coefficients of similar terms leads to

γ1 + γ2 = 1 (5.84a)

Chapter 5. Ordinary Differential Equations 45

γ2α =
1
2

(5.84b)

γ2β =
1
2

(5.84c)

These are three non-linear equations for four unknowns. Using α as a free-parameter leads to

γ2 =
1
2α

β = α γ1 = 1 − 1
2α

(5.85)

This yields a one-parameter family of second order Runge–Kutta formulas:

k1 = hf(un, tn) (5.86a)

k2 = hf(un + αk1, tn + αh) (5.86b)

un+1 = un +
(
1 − 1

2α

)
k1 +

1
2α

k2 (5.86c)

The most often used second order Runge–Kutta formula is when α = 1/2.

Runge–Kutta formulae are often presented in a different, fully equivalent, form called the

predictor-corrector format. The second order Runge–Kutta formula with α = 1/2 in predictor-

corrector format is

u∗
n+1/2 = un +

h

2
f(un, tn) (5.87a)

un+1 = un + hf(u∗
n+1/2, tn+1/2) (5.87b)

We now consider the stability characteristics of this method by applying equations (5.86) to the

model equation u′ = λu with the result

k1 = λhun (5.88a)

k2 = h[λun + αλ2hun] = λh[1 + αhλ]un (5.88b)

un+1 = un +
(
1 − 1

2α

)
λhun +

1
2α

λh(1 + αλh)un

= un

(

1 + λh +
λ2h2

2

)

(5.88c)

From which it is clear that the method is second order accurate. The amplification factor is

σ =
(

1 + λh +
λ2h2

2

)

(5.89)

46 Chapter 5. Ordinary Differential Equations

and for numerical stability we must have |σ| ≤ 1. One way to satisfy this restriction is to set

(

1 + λh +
λ2h2

2

)

= eiθ (5.90)

and find the complex roots, λh, of this polynomial for different values of θ. The resulting stability

region is shown in figure 5.3. On the real axis the boundary is the same as that of explicit Euler;

however, there is an improvement for complex λ. Similar to explicit Euler, second order Runge–

Kutta is also unstable for pure imaginary λ = iω. In this case

|σ| =

√

1 +
ω4h4

4
> 1 (5.91)

The phase error is given by

PE = ωh − tan−1

(
ωh

1 − ω2h2

2

)

(5.92)

Expanding the last term leads to

PE = −ω3h3

6
+ . . . (5.93)

which is only a factor of two better than explicit Euler.

By far the most popular Runge–Kutta scheme is the fourth order formula

un+1 = un +
k1

6
+

k2 + k3

3
+

k4

6
(5.94a)

where

k1 = hf(un, tn) (5.94b)

k2 = hf(un +
k1

2
, tn +

h

2
) (5.94c)

k3 = hf(un +
k2

2
, tn +

h

2
) (5.94d)

k4 = hf(un + k3, tn + h) (5.94e)

Note that to obtain fourth-order accuracy, four function evaluations are required at each time-step.

If the method is applied to the model equation then

un+1 =
(

1 + λh +
λ2h2

2
+

λ3h3

6
+

λ4h4

24

)

un (5.95)

which confirms that the method is fourth order accurate. Again the stability diagram can be found

Chapter 5. Ordinary Differential Equations 47

-4 -3.5 -3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1
-4

-3

-2

-1

0

1

2

3

4

λih

λrh

4th order Runge-Kutta

2th order Runge-Kutta

Figure 5.3: Stability diagram for second and fourth order Runge–Kutta schemes

by finding the zeros of the following polynomial which complex coefficients

1 + λh +
λ2h2

2
+

λ3h3

6
+

λ4h4

24
− eiθ = 0 (5.96)

The stability region for this scheme is also shown in figure 5.3. There is a significant increase in

the stable region compared to the second order Runge–Kutta and there is now a region of stability

on the imaginary axis so that this method is viable for oscillatory solutions.

5.1.9 Multi-Step Methods

Runge–Kutta methods achieved higher order accuracy by using intermediate function evaluations.

Increased accuracy can also be obtained if we use the solution and/or f from time steps prior to tn.

Methods which use prior information are called multi-step schemes. The price for the increased

accuracy is that additional computer memory is required to store the information from prior time

steps. Multi-step methods are not self-starting. Usually a self starting method is used to initiate the

48 Chapter 5. Ordinary Differential Equations

calculations for the first few time-steps.

Leapfrog method

A classic example of a multi-step method is the Leapfrog method

un+1 = un−1 + 2hf(un, tn) (5.97)

which is simply derived by applying the second order central difference formula to u ′ in equation

(5.6). Applying Leapfrog to the model equation yields

un+1 − un−1 − 2λhun (5.98)

which is a difference equation for un. To solve this equation, we assume the standard solution of

the form

un = σn (5.99)

Substituting this into the difference equation leads to

σn+1 − σn−1 = 2hλσn (5.100)

which can be written as a quadratic equation for σ

σ2 − 2hλσ − 1 = 0 (5.101)

The solution is

σ1,2 = λh ±
√

λ2h2 + 1 (5.102)

Multiple roots are characteristic of multi-step methods. One root will approximate the exponential

eλh the other(s) will be spurious. Expanding the roots in (5.102) yields

σ1 = λh +
√

λ2h2 + 1 = 1 + λh +
λ2h2

2
− λ4h4

8
+ . . . (5.103a)

σ2 = λh − √
λ2h2 + 1 = −1 + λh − λ2h2

2
+

λ4h4

8
+ . . . (5.103b)

In this case the first root approximates the exponential to second order accuracy while the second

root is spurious and is often the source of numerical difficulties. Note that even when h = 0 the

spurious root does not go to zero. Furthermore, for λ real and negative, the spurious root has

Chapter 5. Ordinary Differential Equations 49

magnitude greater than 1 which leads to instability for all h. In fact, Leapfrog is only stable for

pure imaginary λ with |ωh| ≤ 1 as will be shown below.

Since the difference equation for un is linear, its general solution can be written as a linear

combination of the roots

un = c1σ
n
1 + c2σ

n
2 (5.104)

Thus, the solution is composed of contributions from both the physical and spurious roots. The

constants c1 and c2 depend on the starting conditions

u0 = c1 + c2 u1 = c1σ1 + c2σ2 (5.105)

Solving for c1 and c2 yields

c1 =
u1 − u0σ2

σ1 − σ2
, c2 =

u0σ1 − u1

σ1 − σ2
(5.106)

Thus for the model problem, it is possible to suppress the spurious root if we set u1 = σ1u0. In

general, the particular starting scheme used will determine the level of contribution of the spurious

root, thus, care must be taken in selecting the starting scheme. However, even if the spurious root

is suppressed initially, round-off errors due to finite precision math on a computer can re-start it.

If we apply Leapfrog to the case of pure imaginary λ = iω then

σ1,2 = iωh ±
√

1 − ω2h2 (5.107)

If |ωh| < 1 then |σ1,2| < 1 and Leapfrog has no amplitude error. If |ωh| > 1 then the method is

unstable since

|σ1,2| =
∣∣∣ω ±

√
ω2h2 − 1

∣∣∣ > 1 (5.108)

The main attraction for Leapfrog is that within its (very restrictive) stability constraints, there is no

amplitude error. However, an examination of the phase error shows that

PE = −ω3h3

6
+ . . . (5.109)

which is approximately the same as the second order Runge–Kutta scheme.

50 Chapter 5. Ordinary Differential Equations

-1 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

λih

λrh

Figure 5.4: Stability diagram for second order Adams-Bashforth scheme

Adams–Bashforth Method

As another example of a multi-step method, we present the second order accurate Adams–Bashforth

method. This method can be readily derived using a Taylor series expansion of un+1 about un

un+1 = un + hu′
n +

h2

2
u′′

n +
h3

6
u′′′

n + . . . (5.110)

Substituting

u′
n = f(un, tn) (5.111)

and using the first order approximation for u′′
n

u′′
n =

f(un, tn) − f(un−1, tn−1)
h

+ O(h) (5.112)

yields

un+1 = un +
3h
2

f(un, tn) − h

2
f(un−1, tn−1) + O(h3) (5.113)

Chapter 5. Ordinary Differential Equations 51

which is the globally second order accurate Adams–Bashforth method.

Applying this method to the model equation generates a second order difference equation.

Assuming solutions of the form un = σn leads to a quadratic equation with roots

σ1,2 =
1
2

⎡

⎣1 +
3
2
λh ±

√

1 + λh +
9
4
λ2h2

⎤

⎦ (5.114)

Expanding in a power series we obtain

σ1 = 1 + λh +
1
2
λ2h2 + O(h3) (5.115)

σ2 =
1
2
λh − 1

2
λ2h2 + O(h3) (5.116)

The spurious root appears to be less dangerous then that of the Leapfrog method since it goes to

zero as h goes to zero. The stability region for the Adams–Bashforth method is shown in figure

5.4. We see that it crosses the real axis at -1 which makes it more limiting than explicit Euler

and second order Runge–Kutta. Similar to these methods, the stability curve is only tangent to the

imaginary axis, making the method, strictly speaking, unstable for pure imaginary λ. However, in

practice, it turns out that the instability is very mild and the Adams–Bashforth method can be used

to obtain oscillatory solutions as long as the integration time is not long enough that the instability

becomes apparent.

One- and Two-Step Linear Multi-Step Methods

So far we have examined two particular multi-step methods. A thorough analysis of two-step

multi-step methods has been performed by Beam and Warming (1978,1979) who wrote the most

general two-step linear multi-step methods that is at least first order accurate as

(1 + ξ)un+1 = (1 + 2ξ)un − ξun−1 + h
[
θu′

n+1 + (1 − θ + ψ)u′
n − ψu′

n−1

]
(5.117)

Clearly the methods are explicit if θ = 0 and implicit otherwise. All of the schemes we have

discussed, except Runge–Kutta methods, are included within this family of multi-step methods.

For completeness, a list of the methods contained in (5.117) is given in table 5.1 using the names

given by Beam and Warming.

52 Chapter 5. Ordinary Differential Equations

θ ξ ψ Method Order
0 0 0 Euler 1
1 0 0 Implicit Euler 1

1/2 0 0 Trapezoidal 2
1 1/2 0 2nd Order Backward 2

3/4 0 -1/4 Adams type 2
1/3 -1/2 -1/3 Lees type 2
1/2 -1/2 -1/2 Two-step trapezoidal 2
5/9 -1/6 -2/9 A-contractive 2
0 -1/2 0 Leapfrog 2
0 0 1/2 2nd order Adams-Bashforth 2
0 -5/6 -1/3 Most accurate explicit 3

1/3 -1/6 0 3rd order implicit 3
5/12 0 1/12 3rd order Adams–Moulton 3
1/6 -1/2 1/6 Milne 4

Table 5.1: Linear one- and two-step methods

5.1.10 Systems of Ordinary Differential Equations

Systems of ordinary differential equations occur in a variety of engineering problems. We have

already demonstrated that a high order ODE can be converted into a system of first order ODE.

Systems of ODE’s also arise naturally in mathematical models of many physics processes, such

as the chemical reactions among several species. Furthermore, the numerical solution of partial

differential equations naturally leads to a system of ODE that must be solved. Fortunately, we

will show that the methods and analysis that we have developed for a single ODE can be readily

extended to systems.

Lets begin with a generic system of ODE of the form

u′ = f(u, t) (5.118)

where u is a vector with components ui and f is a vector function with elements fi. The appli-

cation of a explicit numerical method to solve this equation is a straight forward extension of the

techniques for single ODE. Applying explicit Euler to solve this equation leads to

un+1 = un + hf(un, tn) (5.119)

The right hand side can be calculated from data at the previous time step and the solution can be

advanced forward.

Chapter 5. Ordinary Differential Equations 53

In the numerical solution of systems of ODE, one component of the solution may oscillate very

rapidly, while another component barely changes at all. This difference in the “response rates” of

various components of the solution, is called stiffness and can lead to numerical difficulties. To

explore the concept of stiffness, we introduce the following model problem for systems of ODE

du
dt

= Au (5.120)

where A is a m × m constant matrix. Similar to the model equation for single ODE’s, equation

(5.120) is useful in analyzing numerical methods for systems. From linear algebra we know that

the solution to this system will be bounded if all the eigenvalues of A have negative real parts (this

is analogous to having negative λr for the single equation model problem, u′ = λu.)

Applying explicit Euler to equation (5.120) leads to

un+1 = un + hAun = (I + hA)un (5.121)

where I is the m × m identity matrix. Thus

un = (I + hA)nu0 (5.122)

and to have a bounded solution for large n the matrix Bn = (I + hA)n must approach zero. We

know from linear algebra that for this to occur, the eigenvalues of B must have modulus less than

one. The eigenvalues of B are given by

βi = 1 + hλi (5.123)

where λi are the eigenvalues of the matrix A. For numerical stability we must have

|1 + λih| ≤ 1 (5.124)

Therefore, the step size h must be chosen such that

|1 + λmaxh| ≤ 1 (5.125)

where the largest eigenvalue places the most stringent restriction on h. If the eigenvalues are all

real and negative, then

h ≤ 2
|λmax| (5.126)

54 Chapter 5. Ordinary Differential Equations

If the range of eigenvalues is large (|λ|max/|λ|min >> 1) and the solution is required over a

large time space, then the system of equations is called a stiff system. Stiffness occurs when there

are many degrees of freedom, each with widely different rates of response. Examples include: a

system composed of two springs, one very stiff and the other very flexible; a mixture of chemical

species with widely different reaction rates; and a boundary layer with widely different length

scales.

Numerical difficulties arise with stiff systems when the solution is desired over a long period of

time. For a stable numerical solution, the time step is limited by the component of the solution with

the fastest response. However, if only the long term behavior, or steady-state solution, is desired,

then the stability restriction due to the fast part of the solution will make the overall number of

time steps required extremely high. To overcome this constraint, implicit methods are often used

for stiff systems. Since they are generally unconditionally stable, the long term response can be

determined by taking large time steps. Obviously, the fast components of the solution will not be

resolved in this case. If the solution exhibits periods of fast response and periods of slow response,

then the time step can be varied in the implicit method so that small steps are used for the fast

portions and large time steps in the slow portion. Adaptive time step algorithms based on implicit

methods, such as LSODE, have been developed to automatically select the time step based on the

behavior of the solution. Note that explicit methods cannot take large time steps in the slowly

varying portion of the solution since round-off errors will trigger numerical instability.

5.1.11 Linearization of Systems

When applying implicit methods to a single non-linear ODE we showed that linearization can be

used to avoid iteration at each time step. A similar process can be performed for non-linear systems

of equations. Consider the system

u′ = f(u1, u2, . . . , um) (5.127)

Applying the trapezoidal method to this equation results in

un+1 = un +
h

2
[f(un+1) + f(un)] (5.128)

The Taylor series expansion of f with elements fi is

fi(un+1) = fi(un) +
m∑

k=1

[
u

(n+1)
k − u

(n)
k

] ∂fi

∂uk

∣∣∣∣∣
n

+ O(h2) i = 1, 2, . . . , m (5.129)

Chapter 5. Ordinary Differential Equations 55

which can be written in matrix form as

f(un+1) = f(un) + An (un+1 − un) + O(h2) (5.130)

where An is the Jacobian matrix defined as

An =

⎡

⎢⎢⎢⎣

∂f1
∂u1

∂f1
∂u2

. . . ∂f1
∂um

...
... . . .

...
∂fm

∂u1

∂fm

∂u2
. . . ∂fm

∂um

⎤

⎥⎥⎥⎦

n

(5.131)

Consistent with the order of accuracy of the trapezoidal method, we can use the Taylor series

expansion to form the following system of linear algebraic equations which must be solved at each

time step (

I − h

2
An

)

un+1 =
(

I − h

2
An

)

un + hf(un) (5.132)

Note that the matrix An is a function of time and must be updated at each time step. Similar to

the single equation case, this procedure is identical to taking one iteration of a Newton–Raphson

nonlinear solver. As we have shown, only one such iteration is needed to retain global second-order

accuracy; however, additional iterations will improve the “constant” in the leading error term.

5.2 Boundary Value Problems

As discussed in the introductory section of this Chapter, boundary value problems (BVP’s) differ

from initial value problems in that boundary condition data is specified at two different values of

the independent variable. A second order boundary value problem is

u′′ = f(x, u, u′), u(0) = u0, u(L) = uL (5.133)

where f is an arbitrary function.

Numerical solutions to BVP’s generally take one of two forms:

1. Shooting Methods: An iterative technique which uses the standard methods we have dis-

cussed for initial value problems.

2. Direct Methods: The derivatives are approximated by finite difference operators and the

resulting system of equations are solved subject to the boundary conditions.

56 Chapter 5. Ordinary Differential Equations

Since we have already developed technique for initial value problems, we begin by discussing

shooting methods. First, let’s reduce the second order equation (5.133) to a system of two first

order equations

v = u′ (5.134)

u′ = v (5.135)

v′ = f(x, u, v) (5.136)

with the boundary conditions given in (5.133).

5.2.1 Shooting Methods

To solve this system of equations using one of the methods we have already discussed for initial

value problems requires us to have starting conditions for both unknowns, u and v, at x = 0. Since

we only have a condition for u(0) we make a guess for v(0) and integrate the equations to x = L.

Unless we made a fortuitous guess the final value of u(L) will not equal uL. In this case, we update

the value for v(0) and repeat the process until u(L) = uL. Of course the speed of convergence of

this iterative process depends on the method that we use to update v(0).

For linear problems the process is quite simple with only two iterations required. Consider the

linear problem

u′′(x) + A(x)u′(x) + B(x)u(x) = f(x) (5.137a)

u(0) = u0 u(L) = uL (5.137b)

If we denote two solutions of these equation as u1(x) and u2(x) formed by using two different

initial guesses for u′(0) then, since the equation is linear, the actual solution can be expressed as a

linear combination

u(x) = c1u1(x) + c2u2(x) (5.138)

Since u1(0) = u2(0) = u(0) then

c1 + c2 = 1 (5.139)

Satisfying the condition at x = L leads to

c1u1(L) + c2u2(L) = uL (5.140)

Chapter 5. Ordinary Differential Equations 57

Thus we have two equations in two unknowns and the solution is

c1 =
uL − u2(L)
u1L − u2L

c2 =
u1(L) − uL

u1L − u2L
(5.141)

u(L)

u'(0)

u2(L)
uL

u1(L)

u'(0) u'(0)u'(0)1 23

u'(0)

Figure 5.5: Secant method for solving non-linear boundary value problems using the shooting
technique.

If, however, f is a non-linear function of u then we have to perform additional iterations to

enforce the boundary condition at L to within a prescribed accuracy. Any number of iterative

methods for solving non-linear equations can be used. Here we use the secant method. Consider

the boundary value u(L) as a nonlinear function of u′(0). First we make two initial guesses for the

starting derivative u′
1(0) and u′

2(0) and obtain the solutions u1(x) and u2(x) with the end values

u1(L) and u2(L). The secant method for obtaining a new value for u′(0) is illustrated in figure

5.5. A straight line is formed between the points (u′
1(0), u1(L)) and (u′

2(0), u2(L)). Then the

intersection of this line with the line u(L) = uL is used as the next guess for u′(0). This updated

value is given by

u′
3(0) = u′

1(0) +
u′

2(0) − u′
1(0)

u2(L) − u1(L)
(uL − u1(L)) (5.142)

This processes is repeated until the computed value of u(L) is within a user prescribed toler-

ance. Convergence of the secant method may fail if u(L) is a very sensitive function of u′(0).

58 Chapter 5. Ordinary Differential Equations

5.2.2 Direct Methods

In the direct method, the independent variable is discretized (i.e. a grid of node points in estab-

lished) and one simply approximates the derivatives in the ODE with finite difference approxi-

mations of suitable accuracy. This results in a system of algebraic equations for the dependent

variables at the node points. Linear ODE result in a system of linear algebraic equations while

non-linear ODE lead to a system of non-linear algebraic equations. As an example, consider the

second order accurate finite difference approximation of the linear equation (5.137):

uj+1 − 2uj + uj−1

h2 + Aj
uj+1 − uj−1

2h
+ Bjuj = fj (5.143a)

u(j = 0) = u0 u(j = N) = uL (5.143b)

Here we have assumed that the independent variable is discretized using a uniform grid, xj =

xj−1 + h, j = 1, 2, . . . , N − 1, where h = L/N and x0 = 0, xN = L. Equation (5.143a) can be

rewritten as

αjuj+1 + βjuj + γjuj−1 = fj (5.144)

where

αj =
(1

h2 +
Aj

2h

)
βj =

(
Bj − 2

h2

)
γj =

(1
h2 − Aj

2h

)
(5.145)

j = 1, 2, 3, . . . , N − 1 (5.146)

This is a tri-diagonal system of linear equations. At the points next to the boundaries, j = 1 and

j = N − 1 we take advantage of the known boundary values. For example,

α1u2 + β1u1 = f1 − γ1u0 (5.147)

and

βN−1uN−1 + γN−2uN−2 = fN−1 − αN−1uN (5.148)

Thus we can rewrite the equations in the matrix form

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

β1 α1

γ2 β2 α2
.

γN−2 βN−2 αN−2

γN−1 βN−1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u1

u2
...

uN−2

uN−1

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f1 − γ1u0

f2
...

fN−2

fN−1 − αN−1uN

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(5.149)

Chapter 5. Ordinary Differential Equations 59

and the solution can be obtained using the Thomas algorithm.

Higher-order finite difference approximations can also be used. The main difficulty in doing so

arises near the boundaries where data are required from points outside the domain. The standard

procedure is to use lower-order or one-sided difference formulas near the boundaries. Of course,

increasing the order of the finite difference method will also increase the bandwidth of the matrix

equation. For example, a fourth-order central difference approximation to (5.137) leads to a penta-

diagonal matrix.

Non-Uniform Grids

It is often the case that the solution to an ODE varies rapidly in some regions of the domain and

slowly in others. A typical example is that of a boundary layer where the solution gradients are

large near the wall but approach zero in the freestream. If the regions of high gradients are known

before hand (as is the case for the boundary layer) then the grid can be clustered where needed

before the solution is obtained. If the regions of rapid variation are not known a priori, then

an adaptive algorithm can be used that estimates the grid requirements based on the form of the

truncation error (see section 5.1.10) and places additional grid points where needed.

When applying finite difference techniques, one can either use finite-difference formulae de-

signed for non-uniform grids or a coordinate transformation. For example, common finite differ-

ence approximations on non-uniform grids for the first and second derivatives are given by

u′
j =

uj+1 − uj−1

xj+1 − xj−1
(5.150)

u′′
j = 2

{
uj−1

hj(hj + hj+1)
− uj

hjhj+1
+

uj+1

hj+1(hj + hj+1)

}

(5.151)

where hj = xj − xj−1. These formulae can be used in (5.137) for a non-uniform mesh leading

again to a tri-diagonal system of equations. Generally speaking, the accuracy of finite-difference

formulae for non-uniform meshes is less than that on a uniform mesh. This is due to reduced

cancelations in the Taylor series expansions due to the lack of symmetry in the stencils. Care must

be taken, when using finite-differences on non-uniform meshes, to ensure that the rate of change

in hj is not too large. Large changes in hj can introduce numerical errors in the solution.

Another way of constructing difference formulas on a non-uniform mesh is to perform a trans-

formation of the independent variable to another coordinate system which is chosen to account for

local variations in the solution. Uniform spacing in the new (computational) coordinate system

corresponds to non-uniform spacing in the original (physical) coordinate. An example of such a

60 Chapter 5. Ordinary Differential Equations

mapping is

ξ = cos−1 x (5.152)

which transforms the physical domain 0 ≤ x ≤ 1 to 0 ≤ ξ ≤ π/2. Uniform spacing in ξ, given by

ξj =
jπ

2N
j = 0, 1, 2, . . . , N (5.153)

leads to a very fine mesh near x = 1 and a coarse mesh near x = 0. To transform the equation into

the computational coordinate system, we write the mapping as

ξ = g(x) (5.154)

and use the chain rule to transform the derivatives in the differential equation to the new coordinate

system. Thus,
du

dx
=

dξ

dx

du

dξ
= g′du

dξ
(5.155)

d2u

dx2 =
d

dx

[

g′du

dξ

]

= g′′ du

dξ
+ (g′)2 d2u

dξ2 (5.156)

These expressions are substituted into the differential equation and the derivatives with respect to

ξ are replaced with finite difference approximations on a uniform mesh.

In general, the coordinate transformation method leads to more accurate solutions then the ap-

plication of finite-difference operators for non-uniform grids. In addition, one can generally get

away with more severe variations in the mesh spacing when using the coordinate transformation

technique. The disadvantage of the coordinate transformation method is that the resulting dif-

ferential equation can become rather complicated in the transformed coordinate, especially when

high-order derivatives are present.

5.3 Differential Eigenvalue Problems

A problem related to boundary values problems is the differential eigenvalue problem. Here we

are given a homogeneous ODE with homogeneous boundary conditions and we seek the natural,

or fundamental, modes of the system. For example, consider the differential equation

d2u

dx2 + k2u = 0 (5.157)

Chapter 5. Ordinary Differential Equations 61

with boundary conditions

u(0) = 0 u(1) = 0 (5.158)

The solution to this equation has the form

u(x) = a sin(kx) + b cos(kx) (5.159)

Enforcing the first boundary condition leads to b = 0 while the second boundary condition requires

that a sin(k) = 0. We could require that a = 0 but this would lead to a trivial solution. Instead,

we require that k = jπ where j = 0, 1, 2, . . . Here k is the eigenvalue and u(x) = sin(kx) is

the eigenfunction for this differential eigenvalue problem. There are a countably infinite set of

discrete eigenvalues and associated with each eigenvalue is an eigenfunction. Note that the larger

the eigenvalue, the more oscillatory the eigenfunction. Together, each eigenvalue-eigenfunction

pair is called an eigenmode.

To solve a differential eigenvalue problem numerically, we can replace the derivatives with fi-

nite difference approximations. Using the second order central difference for the second derivative

in (5.157) leads to
ui+1 − 2ui + ui−1

h2 + k2ui = 0 (5.160)

y0 = yn = 0 (5.161)

This can be written as the tri-diagonal system

B
[1
h2 ;

−2
h2 + k2;

1
h2

]
u = 0 (5.162)

where B[a; b; c] is a compact notation for a tri-diagonal matrix with constant diagonals.

For a nontrivial solution the determinant of the matrix must be zero. This is equivalent to

det[k2I − A] = 0 = det[λI − A] (5.163)

where λ = k2 and A = −B[1; −2; 1]/h2. It can be shown that the eigenvalues of a (N − 1) ×
(N − 1) tri-diagonal matrix B[a, b, c] are given by the formula

λj = b + 2
√

ac cos αj (5.164)

αj =
jπ

n
j = 1, 2, 3, . . . , n − 1 (5.165)

62 Chapter 5. Ordinary Differential Equations

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

(k
h
)2

jπ

Figure 5.6: Comparison of numerical and analytical eigenvalues for n = 32.

Thus, the eigenvalues of A are

λj =
1
h2

(
2 + 2 cos

jπ

n

)
j = 1, 2, 3, . . . , n − 1 (5.166)

This expression is compared to the exact eigenvalues in figure 5.6 for n = 32. We see that the

low-order numerical eigenvalues are in good agreement with the exact eigenvalues. As j gets

larger, the numerical eigenvalues become increasingly poor approximations to the exact eigenval-

ues. This disagreement indicates that the eigenfunctions associated with these eigenvalues cannot

be resolved on the given mesh.

Chapter 6

Partial Differential Equations

Partial differential equations (PDE’s) can be classified as either equilibrium problems or propaga-

tion problems depending on the physical processes that they represent. Figure 6.1 shows schemat-

ics for each type of problem. Equilibrium problems are posed on a closed domain with fixed

data supplied on the boundary. The problem consists of finding the steady state solution in the

domain subject to the boundary conditions. Examples of equilibrium problems include: steady

viscous flow, steady heat conduction, and equilibrium stress in a plate. Equilibrium problems are

analogous to boundary value problems for ODE’s.

PDE problems can also be posed as propagation problems that are transient, or unsteady, in

nature. Propagation problems are analogous to initial value problems for ODE’s. They are solved

on an open domain starting from an initial condition and are subject to boundary conditions as

shown in figure 6.1. Typical propagation problems include: unsteady heat convection, acoustic

wave propagation, and vortex shedding from bluff bodies.

L[u] = f

Open Domain

L[u] = f

B[u] = g

B1[u] B2[u]

I[u]

Closed Domain

Equilibrium Problem Propagation Problem

Figure 6.1: Physical classification of partial differential equations – equilibrium and propagation
problems.

Another common means of classifying PDE’s is according to the manner in which informa-

tion is communicated throughout the domain. This leads to the familiar categories of hyperbolic,

parabolic, and elliptic equations. A classical example of a hyperbolic PDE is the wave equation

∂2u

∂t2
− a2∂2u

∂x2 = 0 (6.1)

63

64 Chapter 6. Partial Differential Equations

This equation has two real characteristics

dt

dx
= ±1

a
(6.2)

Figure 6.2a shows a schematic of the characteristics for this hyperbolic problem. We see that

1/a

-1/a

P
Domain of
dependance

t

x

a. Hyperbolic
t

x

P

b. Parabolic c. Elliptic

P

Figure 6.2: Classification of PDE: hyperbolic, parabolic, and elliptic.

the solution at the point P only influenced by the solution inside the shaded region – called the

“domain of dependence.” A schematic for a parabolic problem is given in figure 6.2b which shows

that, in this case, the solution at P is influenced by all the data in x for previous time. Finally,

figure 6.2c shows a typical elliptic problem, such as Laplace’s equation

∇2u = 0 (6.3)

For an elliptic problem, the solution at P is influenced by all the points in the domain.

6.1 Semi-Discretization and

Matrix Stability Analysis

In previous chapters we have indicated that when partial differential equations are solved numer-

ically, they lead to a system of ordinary differential equations. As an example, consider the one-

dimensional heat equation
∂u

∂t
= ν

∂2u

∂x2 (6.4)

Chapter 6. Partial Differential Equations 65

with boundary and initial conditions

u(0, t) = 0 u(L, t) = 0 u(x, 0) = u0(x) (6.5)

If we approximate the spatial derivative in (6.4) using the second order central difference we

obtain
∂uj

∂t
= ν

uj−1 − 2uj + uj+1

∆x2 j = 1, 2, . . . , N − 1 (6.6)

where we have assumed that the domain is divided into N + 1 uniformly spaced node points given

by xj = jL/N for j = 0, 1, 2, . . . , N . This is an example of semi-discretization where we have

discretized in space but not in time. We can rewrite (6.6) as a (N − 1) × (N − 1) matrix equation

∂

∂t

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u1

u2
...

uN−2

uN−1

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=
ν

∆x2

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−2 1

1 −2 1
.

1 −2 1

1 −2

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u1

u2
...

uN−2

uN−1

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(6.7)

This is clearly a system of ordinary differential equations that can be written in the form of our

model ODE for systems
∂u
∂t

= Au (6.8)

where

A =
ν

∆x2B[1, −2, 1] (6.9)

and B[1, −2, 1] is a compact notation for a tri-diagonal matrix with constant diagonals.

This system of ordinary differential equations can be solved using any of the methods that we

have discussed, such as Runge–Kutta formulae or multi-step methods. However, we must ensure

that the method we use is stable and that stiffness does not render it unusable. Both stability and

stiffness can be determined from the eigenvalue structure of the matrix A. As shown in equation

(5.164), the eigenvalues of the (N − 1) × (N − 1) tri-diagonal matrix B[a, b, c] are given by the

formula

λj = b + 2
√

ac cos αj (6.10)

αj =
jπ

N
j = 1, 2, 3, . . . , N − 1 (6.11)

66 Chapter 6. Partial Differential Equations

Thus, the eigenvalues of A are

λj =
ν

∆x2

(
−2 + 2 cos

πj

N

)
j = 1, 2, 3, . . . , N − 1 (6.12)

Notice that all the eigenvalues are real and negative so that the solution decays. From our analysis

of ODE methods, we can conclude that Leapfrog would be unstable if applied to (6.8). To deter-

mine stiffness we need the eigenvalues with the smallest and largest magnitudes. The eigenvalue

with the smallest magnitude occurs for j = 1

λ1 =
ν

∆x2

(
−2 + 2 cos

π

N

)
(6.13)

We can simplify this expression by expanding the cosine term in a Taylor series for large N

cos
π

N
= 1 − 1

2!

(
π

N

)2
+

1
4!

(
π

N

)4
+ . . . (6.14)

If we retain only the first two terms then

λ1 ≈ − π2ν

N2∆x2 (6.15)

The eigenvalue with the largest magnitude occurs for j = N − 1 and is given by

λN−1 = − 4ν
∆x2 (6.16)

Thus, the ratio of the largest to smallest magnitude eigenvalues is

∣∣∣∣∣
λN−1

λ1

∣∣∣∣∣ ≈
4N2

π2 (6.17)

As N is increased the system clearly becomes stiff. Thus, we may wish to use an implicit scheme

such as trapezoidal method as opposed to an explicit method like fourth-order Runge-Kutta.

Since all the eigenvalues are unique, we can use the standard methods of linear algebra to

decouple the equations using the matrix of eigenvectors S.

dψ

dt
= Λψ (6.18)

where Λ = S−1AS is a diagonal matrix with the eigenvalues of A on the diagonal and ψ = S−1u.

Chapter 6. Partial Differential Equations 67

Since the equations are uncoupled in this form, the solution is simply

ψj(t) = ψj(0)eλjt j = 1, 2, . . . , N − 1 (6.19)

where ψ(0) = S−1u0. Since all the eigenvalues, λj are real and negative, the solution decays as is

expected for the heat equation.

Now we consider the model equation for pure convection, called the one-dimensional wave

equation,
∂u

∂t
+ c

∂u

∂x
= 0 (6.20)

u(0, t) = 0 u(L, t) = 0 u(x, 0) = u0(x) (6.21)

Note, that the second boundary condition is not physically required, but we have to have some

condition to close the numerical calculation. Setting u(L, t) = 0 is equivalent to stating that the

integration time is short enough that the non-zero region of the initial condition does not hit the

boundary.

We semi-discretize the wave equation using the second order central difference formula for the

first derivative with the result

∂u

∂t
+

c

2∆x
(uj+1 − uj−1) = 0 (6.22)

Rewriting in matrix notation leads to

∂u
∂t

= − c

2∆x
B[−1, 0, 1]u (6.23)

We can use equation (6.10) to determine the eigenvalues of this matrix

λj = − ic

2∆x
cos

jπ

N
= iωj (6.24)

For this semi-discrete wave equation, the eigenvalues are purely imaginary which means that the

solution does not decay, but instead oscillates like eiωt in time. Similar to the analysis for the heat

equation above, we can use a similarity transformation to write the solutions in the form

ψj(t) = ψj(0)eiωit j = 1, 2, . . . , N − 1 (6.25)

68 Chapter 6. Partial Differential Equations

The discretization of these two model equation provides support for the use of the model ordi-

nary differential equation

u′ = λu (6.26)

introduced in Chapter 5. The case with λ real and negative is a model for the heat equation (6.4)

while the case with λ purely imaginary is a model for the wave equation 6.22. Thus, the application

of numerical methods to solve the semi-discrete systems of ODE for these equations must address

the same issues of stability, stiffness, and accuracy discussed in Chapter 5.

As an example, if we applied explicit Euler to equation (6.22) then, since the eigenvalues of the

semi-discrete equation are pure imaginary, we expect numerical solutions that are unconditionally

unstable. On the other hand, the application of explicit Euler to the semi-discrete heat equation

(6.4) results in conditional stability. In this case, the maximum allowable time step is given by

|1 + ∆tλi| ≤ 1 i = 1, 2, 3, . . . , N − 1 (6.27)

which leads to the requirement

∆t ≤ ∆x2

2ν
(6.28)

where we have used equation (6.16) for the maximum magnitude eigenvalue of the semi-discrete

heat equation. Unfortunately this is a rather stringent constraint. It implies that if we decrease the

spatial mesh size (to improve accuracy) by a factor of 2 then we have to decrease the time step by

a factor of 4!

The analysis performed here, is called matrix stability analysis. It is a particularly powerful

method since it includes the boundary conditions in the semi-discretization. Although many sta-

bility problems are due to the interior difference scheme, boundary conditions can adversely affect

numerical stability.

In the following sections, we will introduce simpler methods for determining the stability prop-

erties of the interior difference scheme. However, the matrix stability analysis will remain our pri-

mary tool for determining the stability characteristics of the full semi-discrete problem including

boundary conditions.

As a note of caution, the reader should recall that the results presented here are only valid when

second order finite difference operators used for the spatial derivatives. We could have used first

order or fourth order approximations — its up to you. However, doing so will lead to different

matrix equations with different eigenvalue structures. For more complicated matrix equations,

analytical solutions for the eigenvalues may not be readily available. In that case, algorithms for

Chapter 6. Partial Differential Equations 69

computing the eigenvalues of matrices are available in Matlab, Mathematica, and in the LAPACK

library of FORTRAN subroutines.

6.2 von Neumann Analysis

If we are only concerned with the stability characteristics of a numerical method, without account-

ing for boundary conditions, then a simple method called von Neumann analysis is available. This

technique assumes that the boundary conditions are periodic and is only valid for linear constant

coefficient difference equations. Thus von Neumann’s method is applied to the fully-discrete equa-

tion.

To demonstrate von Neumann’s method, consider the fully discrete heat equation given by

u
(n+1)
j = u

(n)
j +

ν∆t

∆x2

(
u

(n)
j+1 − 2u(n)

j + u
(n)
j−1

)
(6.29)

The reader should recognize this as second order central in space and explicit Euler in time. The

key to von Neumann’s analysis is assuming that the solution to the difference equation is of the

form

u
(n)
j = σneikxj (6.30)

Recall that eikxj = cos(kxj) + i sin(kxj) which demonstrates the periodicity of the assumed solu-

tion. Substituting this solution into (6.29) results in

σn+1eikxj = σneikxj +
ν∆t

∆x2 σn
(
eikxj+1 − 2eikxj + eikxj−1

)
(6.31)

Noting that

xj+1 = xj + ∆x and xj−1 = xj − ∆x (6.32)

and dividing through by σneikxj we obtain

σ = 1 +
(

ν∆t

∆x2

)
[2 cos(k∆x) − 2] (6.33)

The stability condition for explicit Euler is |σ| ≤ 1 which means that

∣∣∣∣1 +
(

ν∆t

∆x2

)
[2 cos(k∆x) − 2]

∣∣∣∣ ≤ 1 (6.34)

70 Chapter 6. Partial Differential Equations

This inequality can be written as

−1 ≤ 1 +
(

ν∆t

∆x2

)
[2 cos(k∆x) − 2] ≤ 1 (6.35)

Since [2 cos(k∆x) − 2] ≤ 0, the right-hand inequality is always satisfied. The left-hand inequality

leads to the constraint

∆t ≤ 2∆x2

ν[2 − 2 cos(k∆x)]
(6.36)

The worst case occurs when cos(k∆x) = −1 so that the maximum time step for stability is given

by

∆t ≤ ∆x2

2ν
(6.37)

This is equivalent to equation (6.28) which was obtained using matrix stability analysis. The

agreement is just a coincidence since the matrix analysis used Dirichlet boundary conditions while

the von Neumann’s method assumes periodicity.

To summarize, von Neumann’s analysis determines the stability characteristics of a fully dis-

crete numerical method applied to a linear PDE with constant coefficients and assuming periodic-

ity.

6.3 Modified Wave Number Analysis

Modified wave number analysis is very similar to von Neumann analysis, but, in many ways is eas-

ier to perform and interpret. Basically, it allows us to use our knowledge about stability properties

of numerical methods applied to ODE to problems involving the same numerical method applied

to PDE.

As an example, consider the heat equation (6.4) and assume a solution of the form

u(x, t) = ψ(t)eikx (6.38)

Substituting into (6.4) leads to
dψ

dt
= −νk2ψ (6.39)

where k is the wave number of the assumed solution. In practice, we must approximate the spatial

derivative using a finite difference formula. If we use the second order central difference scheme

then
∂uj

∂t
= ν

uj+1 − 2uj + uj−1

∆x2 j = 1, 2, 3, . . . , N − 1 (6.40)

Chapter 6. Partial Differential Equations 71

Let the solution to these semi-discrete equations be of the form

uj = ψ(t)eikxj (6.41)

Substituting this form of the solution and dividing through by e ikxj leads to

∂ψ

∂t
= − 2ν

∆x2 [1 − cos(k∆x)] ψ = −νk′2ψ (6.42)

where

k′2 =
2

∆x2 [1 − cos(k∆x)] (6.43)

By analogy to equation (6.39), k′ is called the modified wave number. The modified wave

number is a function of both the original PDE and the finite-difference scheme used. For a given

equation, each finite-difference scheme has a distinct modified wave number associated with it.

Equation (6.42) is identical to the model equation ψ ′ = λψ with λ = −νk′2. Since we have

studied the stability properties of various numerical methods applied to the model equation, we can

readily use these results to obtain stability characteristics of time advancement schemes applied to

PDE’s. All we have to do is use λ = −νk′2 in our ODE analysis.

For example, explicit Euler requires that

∆t ≤ 2
|λ|max

=
2∣∣∣ 2ν

∆x2 [1 − cos(k∆x)]
∣∣∣
max

(6.44)

The worst case scenario occurs when cos(k∆x) = −1. Thus

∆t ≤ ∆x2

2ν
(6.45)

which agrees with the results found using von Neumann analysis. If we decided to use fourth order

Runge–Kutta then the stability limit would be

∆t ≤ 2.81∆x2

4ν
(6.46)

where the quantity 2.81 is read directly from the intersection of the stability contour with the

negative real axis in figure 5.3. Since −νk′2 is real and negative we also know that the Leapfrog

method will lead to numerical instability.

Applying the modified wave number analysis to the wave equation (6.22) with second order

72 Chapter 6. Partial Differential Equations

central differencing in space leads to the following

∂u

∂t
= −ik′cu (6.47)

where

k′ =
sin(k∆x)

∆x
(6.48)

is the modified wave number. Thus, the corresponding λ in the model equation λ = −ik ′c is

pure imaginary. So without any further analysis, we know that explicit Euler and second order

Runge–Kutta would be unstable for this problem. However, if Leapfrog is used the the maximum

allowable time step is determined from

∆t =
1

k′c
=

∆x

c sin(k∆x)
(6.49)

and taking the worst case scenario, this leads to

∆tmax =
∆x

c
(6.50)

or, if we form a nondimensional parameter,

c∆t

∆x
≤ 1 (6.51)

where c∆t/∆x is the Courant, Friedrich, and Lewy number, CFL for short. The CFL number is

a very important numerical parameter governing the stability of numerical schemes for convec-

tion dominated problems. We will discuss the CFL number again when we consider numerical

algorithms for the Euler and Navier–Stokes equations.

6.4 Crank–Nicholson Method

In our analysis of the semi-discrete heat equation we have determined that for large N the resulting

system of ODE’s becomes stiff. Furthermore, the stability requirement when explicit schemes are

used is very restrictive. For these reasons, implicit methods are often used for parabolic equations.

The most popular implicit method is the second order trapezoidal method, which when applied to

PDE’s, is called the Crank Nicholson method. Using the trapezoidal method for the heat equation

Chapter 6. Partial Differential Equations 73

(6.4) leads to
u(n+1) − u(n)

∆t
=

ν

2

[
∂2u(n+1)

∂x2 +
∂2u(n)

∂x2

]

(6.52)

Note that this is a semi-discrete equation where we have discretized in time but not in space. If we

use the second order central difference for the spatial derivatives then

u(n+1) − u(n) =
ν∆t

2∆x2

[
u

(n+1)
j+1 − 2u(n+1)

j + u
(n+1)
j−1 + u

(n)
j+1 − 2u(n)

j + u
(n)
j−1

]
(6.53)

If we let β = ν∆t/2∆x2 and collect terms with superscript (n + 1) on the left hand side then we

obtain the tri-diagonal system of equations

−βu
(n+1)
j+1 + (1 + 2β)u(n+1)

j − βu
(n+1)
j−1 = βu

(n)
j+1 + (1 − 2β)u(n)

j + βu
(n)
j−1 (6.54)

j = 1, 2, 3, . . . , N − 1 (6.55)

At every time step, we must solve a tri-diagonal system of equations. In one-dimension this is

not too expensive (order N arithmetic operations) however, as we will see below, this process can

become very expensive for problems in multiple dimensions.

To verify the unconditional stability of this method let’s perform a modified wave number

analysis. Recall that the amplification factor for trapezoidal method is

σ =
1 + λ∆t/2
1 − λ∆t/2

(6.56)

From the modified wave number analysis in section 6.3 we know that λ = −νk ′2 where

k′2 =
2

∆x2 [1 − cos(k∆x)] (6.57)

Thus,

σ =
1 − ν∆t

∆x2 [1 − cos(k∆x)]
1 + ν∆t

∆x2 [1 − cos(k∆x)]
(6.58)

Since 1 − cos(k∆x) ≥ 0 the denominator is always larger than the numerator, |σ| ≤ 1, and

the method is unconditionally stable. However, for large ν∆t/∆x2 σ → −1 so that the solution

oscillates for large ∆t but always remains bounded.

74 Chapter 6. Partial Differential Equations

6.5 Modified Equation

The numerical solution is only an approximation to the exact solution. Although it satisfies the

discretized equations, it does not exactly satisfy the continuous equation. Instead it satisfies a

modified equation. As an example, consider the heat equation (6.4) and denote ũ as the exact

solution and u as the numerical solution obtained using explicit Euler with second order spatial

differencing. The discrete equation can be written as

L[u(n)
j] =

u(n+1) − u(n)

∆t
− ν

u
(n)
j+1 − 2u(n)

j + u
(n)
j−1

∆x2 = 0 (6.59)

where we have introduced the difference operator L[u(n)
j]. To determine the modified equation,

every term in (6.59) is expanded in a Taylor series about u
(n)
j .

u
(n+1)
j = u

(n)
j + ∆t

(
∂uj

∂t

)(n)

+
∆t2

2

(
∂2uj

∂t2

)(n)

+ . . . (6.60)

Thus,
u(n+1) − u(n)

∆t
=
(

∂uj

∂t

)(n)

+
∆t

2

(
∂2uj

∂t2

)(n)

+ . . . (6.61)

Similarly
u

(n)
j+1 − 2u(n)

j + u
(n)
j−1

∆x2 =
(

∂2u(n)

∂x2

)

j

+
∆x2

12

(
∂4u(n)

∂x4

)

j

+ . . . (6.62)

Substituting these expressions into equation (6.59) results in

L[u(n)
j] −

⎡

⎣
(

∂uj

∂t

)(n)

− ν

(
∂2u(n)

∂x2

)

j

⎤

⎦ = −ν
∆x2

12

(
∂4u(n)

∂x4

)

j

+
∆t2

2

(
∂2uj

∂t2

)(n)

+ . . . (6.63)

Since this equation was derived for an arbitrary grid, we can drop the index notation leaving

L[u] −
(

∂u

∂t
− ν

∂2u

∂x2

)

= −ν
∆x2

12
∂4u

∂x4 +
∆t2

2
∂2u

∂t2
+ . . . (6.64)

Since u is the solution to the discrete equation, L[u] = 0 and we are left with the following modified

equation which is the continuous equation that the discrete solution satisfies

∂u

∂t
− ν

∂2u

∂x2 = ν
∆x2

12
∂4u

∂x4 − ∆t2

2
∂2u

∂t2
+ . . . (6.65)

Chapter 6. Partial Differential Equations 75

Clearly, as we refine our space-time mesh by letting ∆x and ∆t approach zero, the modified

equation approaches the exact PDE. If we plug the exact solution, ũ, into (6.64) then we obtain

L[ũ] = −ν
∆x2

12
∂4u

∂x4 +
∆t2

2
∂2u

∂t2
+ . . . (6.66)

and L[ũ] is known as the truncation error of the method.

Under rather restrictive conditions, it is possible to reduce the truncation error by the judicious

selection of ∆t and ∆x. To see this, lets take ∂/∂t of (6.4)

∂2ũ

∂t2
= ν

∂3ũ

∂t∂x2 = ν2 ∂4ũ

∂x4 (6.67)

where we have made use of the fact that ũ is the exact solution to the heat equation. Thus the

truncation error can be rewritten as

L[ũ] =
(

−ν
∆x2

12
+ ν2 ∆t2

2

)
∂4u

∂x4 + . . . (6.68)

If we set the term in parentheses equal to zero then we will increase the accuracy of the scheme.

Doing so requires that
ν∆t

∆x2 =
1
6

(6.69)

This value is one-third of the stability limit, making this a stable time step, however, it is a rather

small time step and is a very restrictive condition. The reason this works is that the first order errors

in space and time compete; the spatial error causes the solution to decay faster than it should, the

temporal error makes the solution decay slower than it should. When the time step and mesh

size satisfy (6.69) the spatial and temporal errors cancel (to lowest order) leading to a dramatic

improvement in accuracy.

6.6 Inconsistency: the Dufort–Frankel Method

Not all numerical methods are consistent. A consistent method is one that when ∆x and ∆t

approach zero, arbitrarily, the modified equation approaches the exact equation. This was certainly

the case for the method applied to the heat equation in the previous section.

As an example of an inconsistent method, we consider the Dufort–Frankel method for solving

the heat equation. This method is developed in two steps. First, we apply Leapfrog in time and

76 Chapter 6. Partial Differential Equations

second order central in space to yield

u(n+1) − u(n−1)

2∆t
=

ν

∆x2

[
u

(n)
j+1 − 2u(n)

j + u
(n)
j−1

]
(6.70)

Formally this method is second order in space and time. However, we know from our analysis of

the Leapfrog method that it is unstable for real, negative λ. To get a stable scheme, Dufort and

Frankel substituted for u
(n)
j in the right hand side using the following approximation

u
(n)
j =

u
(n+1)
j + u

(n−1)
j

2
+ O(∆t2) (6.71)

Since this expression is second order in time, the formal accuracy of the method is unchanged.

Rearranging terms leads to

(1 + 2β)u(n+1)
j = (1 − 2β)u(n−1)

j + 2βu
(n)
j+1 + 2βu

(n)
j−1 (6.72)

where β = ν∆t/∆x2. Applying von Neumann analysis to this equation demonstrates that this

method is actually unconditionally stable. Thus, we have obtained the holy grail of numerical

analysis — an explicit scheme that is always stable. Unfortunately, it is not as good as it seems. If

we expand each term in a Taylor series about u
(n)
j we obtain the following modified equation

∂u

∂t
− ν

∂2u

∂x2 = −∆t2

6
∂3u

∂t3
+

ν∆x2

12
∂4u

∂x4 − ν∆t2

∆x2

∂2u

∂t2
− ν∆t4

12∆x2

∂4u

∂t4
+ . . . (6.73)

The problem with this method lies in the third term on the right hand side. If we hold the time step

fixed and refine the spatial mesh, the error actually goes up. Thus, we cannot improve the accuracy

of the numerical solution by arbitrarily letting ∆x and ∆t go to zero. Instead, to make the third

term approach zero, we must require that ∆t goes to zero faster than ∆x. The Dufort–Frankel

method is an example of an inconsistent numerical method. Consistency is the requirement that

the numerical solution approaches the exact solution as ∆x and ∆t are independently refined.

Chapter 6. Partial Differential Equations 77

6.7 Multi-Dimensions

So far, we have only considered one-dimensional problems. Fortunately, the extension to multiple

dimensions is relatively straight forward. Let’s begin with the two-dimensional heat equation

∂u

∂t
= ν

(
∂2u

∂x2 +
∂2u

∂y2

)

(6.74)

and for our numerical solution we introduce a grid in the (x, y) plane with M + 1 points in x and

N + 1 points in y. The boundary points are at j = 0, M or k = 0, N and here we assume that

Dirichlet conditions are applied. Let u
(n)
j,k denote the value of u at the grid point (j, k) and at time

step n.

6.7.1 Explicit Schemes

Any explicit time advancement scheme applied to (6.74) leads to a very simple numerical method.

For example, applying the explicit Euler method along with second order central differences in

space gives

u
(n+1)
j,k − u

(n)
j,k

∆t
= ν

⎡

⎣u
(n)
j+1,k − 2u(n)

j,k + u
(n)
j−1,k

∆x2 +
u

(n)
j,k+1 − 2u(n)

j,k + u
(n)
j,k−1

∆x2

⎤

⎦ (6.75)

Starting from an initial condition u
(0)
j,k one simply marches forward in time to obtain the solution at

the next time step. Near the boundaries, j = 1, M or k = 1, N boundary values are required and

their values are obtained from the prescribed boundary conditions.

We can use the same methods already discussed for one-dimensional problems to determine the

stability properties of the current method. For example, using the modified wave number method,

we assume a solution of the form u = ψ(t)eikxx+ikyy and plugging this into the semi-discrete

equation (6.75) (discretized in space, not in time) yields

dψ

dt
= −ν

(
k′

x
2 + k′

y
2
)

(6.76)

where the modified wave numbers are given by

k′
x
2 =

2
∆x2 [1 − cos(kx∆x)] (6.77a)

78 Chapter 6. Partial Differential Equations

k′
y
2 =

2
∆y2 [1 − cos(ky∆y)] (6.77b)

From what we know of the explicit Euler method, the following condition must be satisfied for a

stable solution

∆t ≤ 2

ν
{

2
∆x2 [1 − cos(kx∆x)] + 2

∆y2 [1 − cos(ky∆y)]
} (6.78)

The worst case occurs when cos(kx∆x) = −1 and cos(ky∆y) = −1, thus

∆t ≤ 1

2ν
{

1
∆x2 + 1

∆y2

} (6.79)

When the mesh is square, ∆x = ∆y = h and we have the special case

∆t ≤ h2

4ν
(6.80)

which is two times more restrictive than the one-dimensional case. In three-dimensions for a square

mesh, one obtains

∆t ≤ h2

6ν
(6.81)

Even in one-dimension, explicit schemes are not often practical for parabolic equations. We see

here that the situation is even worse in multiple dimensions.

6.7.2 Implicit Schemes

Implicit schemes are often the methods of choice to overcome the severe time step restrictions asso-

ciated with explicit schemes for parabolic problems. If we apply Crank–Nicholson (i.e.trapezoidal

method) to the 2-D heat equations we obtain

u(n+1) − u(n)

∆t
=

ν

2

[
∂2u(n+1)

∂x2 +
∂2u(n+1)

∂y2 +
∂2u(n)

∂x2 +
∂2u(n)

∂y2

]

(6.82)

If we use second order central in space, and for simplicity, assume a square mesh then we obtain,

after some rearrangement,

u
(n+1)
j,k − u

(n)
j,k =

ν∆t

2h2

[
u

(n+1)
j+1,k − 2u(n+1)

j,k + u
(n+1)
j−1,k + u

(n+1)
j,k+1 − 2u(n+1)

j,k + u
(n+1)
j,k−1

]

+
ν∆t

2h2

[
u

(n)
j+1,k − 2u(n)

j,k + u
(n)
j−1,k + u

(n)
j,k+1 − 2u(n)

j,k + u
(n)
j,k−1

]
(6.83)

Chapter 6. Partial Differential Equations 79

If we let β = ν∆t/2h2 and collect unknowns on the left hand side, then

−βu
(n+1)
j,k + (1 + 4β)u(n+1)

j,k − βu
(n+1)
j−1,k − βu

(n+1)
j,k+1 − βu

(n+1)
j,k−1 =

βu
(n)
j,k + (1 − 4β)u(n)

j,k + βu
(n)
j−1,k + βu

(n)
j,k+1 + βu

(n)
j,k−1 = F (n) (6.84)

which is a system of linear algebraic equations for u
(n+1)
j,k . Writing this system in matrix form

results in the following [(M − 1)(N − 1)] × [(M − 1)(N − 1)] block-tridiagonal matrix

G =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

B C

A B C
.

A B C

A B

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(6.85)

where A, B, and C are (M − 1) × (M − 1) matrices. In this case, A and C are diagonal matrices

while B is tri-diagonal. For practical problems G can become very large. For example, if M = 101

and N = 101 then G has 108 elements. However, it we take advantage of the banded structure of

the matrix G in the Gauss elimination process we will only need to store 2(M − 1)2N elements.

For the current example this amounts to 2 × 106 words of memory. To put this in perspective, if

we are using 8 byte floating point numbers then the matrix G requires 16 mega-bytes of memory

to store and solve!

6.7.3 Approximate Factorization

There have been a variety of ways that have been developed to reduce the storage requirements of

implicit methods applied to multi-dimensional problems. These methods include iterative solution

techniques, described in the next section, and split or factored schemes. The advantage of factored

schemes is that they avoid large matrices and iteration while maintaining the same order of accu-

racy. Consider again the two-dimensional heat equation (6.74) with Crank–Nicholson in time and

second order central in space. The discrete equation is given by (6.75), but for the purpose at hand

the following form is more useful

u(n+1) − u(n)

∆t
=

ν

2
δx

[
u(n+1) + u(n)

]
+

ν

2
δy

[
u(n+1) + u(n)

]
+

O(∆t2) + O(∆x2) + O(∆y2) (6.86)

80 Chapter 6. Partial Differential Equations

where δx and δy are shorthand notation for the finite difference operators in x and y respectively.

For example, δxu is a vector of length (N − 1)(M − 1) with the following elements

uj+1,k − 2uj,k + uj−1,k

∆x2 j = 1, 2, . . . , (M − 1) k = 1, 2, . . . , (N − 1) (6.87)

If we move terms involving time step n+1 onto the left hand side, and those at n on the right hand

side then

[
I − ν∆t

2
δx − ν∆t

2
δy

]
u(n+1) =

[
I +

ν∆t

2
δx +

ν∆t

2
δy

]
u(n) +

∆t
[
O(∆t2) + O(∆x2) + O(∆y2)

]
(6.88)

We can then factor the terms in square brackets

(
I − ν∆t

2
δx

)(
I − ν∆t

2
δy

)
u(n+1) − ν2∆t2

4
δxδyu

(n+1) =
(
I +

ν∆t

2
δx

)(
I +

ν∆t

2
δy

)
u(n) − ν2∆t2

4
δxδyu

(n) + (6.89)

∆t
[
O(∆t2) + O(∆x2) + O(∆y2)

]

and rewrite this as

(
I − ν∆t

2
δx

)(
I − ν∆t

2
δy

)
u(n+1) =

(
I +

ν∆t

2
δx

)(
I +

ν∆t

2
δy

)
u(n)

+
ν2∆t2

4

(
u(n+1) − u(n)

)
+ ∆t

[
O(∆t2) + O(∆x2) + O(∆y2)

]
(6.90)

However, from a Taylor series expansion we know that u(n+1) − u(n) = O(∆t), so that the cross-

derivative term is of the same order of accuracy as the truncation error and can therefore be ne-

glected. Thus we arrive at the approximately factored form of the discrete equations

(
I − ν∆t

2
δx

)(
I − ν∆t

2
δy

)
u(n+1) =

(
I +

ν∆t

2
δx

)(
I +

ν∆t

2
δy

)
u(n) (6.91)

which we will now show to be considerably more memory efficient to solve then the unfactored

equation.

To solve the factored equation (6.91) we first denote the known right hand side by f . Further-

more, if we let (
I − ν∆t

2
δy

)
u(n+1) = z (6.92)

Chapter 6. Partial Differential Equations 81

then we can solve for z from the following equation

(
I − ν∆t

2
δx

)
z = f (6.93)

In index form this equation becomes

− ν∆t

2∆x2 zj+1,k +
(
1 +

ν∆t

∆x2

)
zj,k − ν∆t

2∆x2 zj−1,k = fj,k (6.94)

Thus, for each value of k = 1, 2, . . . , (N − 1), a tri-diagonal system of equations must be solved

for zi,j . Once z is know, we can solve for u(n+1) from (6.92) which, in index notation, is

− ν∆t

2∆y2u
(n+1)
j,k+1 +

(

1 +
ν∆t

∆y2

)

u
(n+1)
j,k − ν∆t

2∆y2u
(n+1)
j,k−1 = zj,k (6.95)

which is also a tri-diagonal system of equations that must be solved for each value of i = 1, 2, . . . , (M−
1).

Instead of solving a single large system of size (M − 1)2 × (N − 1)2, we now solve (M − 1)

tri-diagonal systems of size (N − 1) and then (N − 1) tri-diagonal systems of size (M − 1). Both

the number of operations and the number of words of memory required is on the order of MN .

The reader may have noticed that to solve the system of equations (6.94) requires boundary

conditions for z at j = 1, N . However, in the physical problem, boundary conditions are only

prescribed for u. To generate boundary conditions for z one can use equation (6.92). As an

example, consider the boundary at x = 0. Here, z0,j is computed from

z0,k = u
(n+1)
0,k − ν∆t

2∆y2

(
u

(n+1)
0,k+1 − 2u(n+1)

0,k + u
(n+1)
0,k−1

)
(6.96)

Note that the boundary data are at time-step (n + 1). An equation similar to this is obtained at the

other boundaries. Note that we have factored the original equation such that we first solve systems

in x and then solve systems in y. We could just as easily have factored the original problem such

that we solved first in y then in x. In practice, one can alternate between the two approaches to

reduce anisotropy in the numerical method.

Using the modified wave number analysis or von Neumann’s method, it can be shown that the

factored discrete equation retains unconditional stability in this case. However, this is not always

the case, especially if higher-order finite difference formulas are used for the spatial derivatives.

Also, approximate factorization applied in three-dimensions leads to only conditional stability even

for second order accurate schemes. It is important to note, while the formal order of accuracy of

82 Chapter 6. Partial Differential Equations

the factor form is the same as the original equation, the actual level of error will likely be higher

due to the neglect of the cross derivative term.

6.8 Iterative Methods

In many instances, especially for high-order methods and methods on unstructured meshes, it is

impractical to solve the resulting system of linear equations using a direct method or even ap-

proximate factorization. In these cases, one must resort to iterative solution methods that generate

an approximate solution to the linear system of equations at much less expense. By far the most

developed theory and methods for iterative solution are for elliptic PDE’s. Thus we begin this

section with a brief review of elliptic equations. We then show that the numerical solution of el-

liptic PDE naturally leads to a large system of algebraic equations that are typically too large for

direct solution methods. We then introduce a range of iterative methods for the solution of these

linear systems. It is important to remember that the iterative methods presented are typically valid

for general linear systems of equations – we just use the numerical solution of elliptical PDE as

motivation.

6.8.1 Elliptic Partial Differential Equations

The classical example of an elliptic PDE is Laplace’s equation which can be written as

∇2φ = 0 (6.97)

where the form of ∇2 depends on the coordinate system in use. For example, in two-dimensional

Cartesian coordinates

∇2φ =
∂2φ

∂x2 +
∂2φ

∂y2 (6.98)

A source term is added to the right hand side of the Laplace equation leads to the Poisson equation

∇2φ = f (6.99)

If a time derivative term is added to the Laplace equation and a Fourier decomposition is used in

time, then we obtain an equation of the form

∇2φ + ωφ = 0 (6.100)

Chapter 6. Partial Differential Equations 83

which is called a Helmholtz equation.

As an example of a numerical solution of an elliptical PDE, consider the application of second

order central differences to the two-dimensional Poisson equation in Cartesian coordinates

φi+1,j − 2φi,j + φi−1,j

∆x2 +
φi,j+1 − 2φi,j + φi,j−1

∆y2 = fi,j (6.101)

which can be rewritten as

φi+1,j − 4φi,j + φi−1,j + φi,j−1 + φi,j+1 = h2fi,j (6.102)

for i = 1, 2, . . . , M − 1 and j = 1, 2, . . . , N − 1. If we index the unknown φi,j first with i then

with j, we have the vector of unknowns

x = {φ1,1, φ2,1, φ3,1, . . . , φM−1,1, φ1,2, φ2,2, . . . , φM−1,N−1}T (6.103)

Then we can rewrite the systems of equations in the matrix form

Ax = b (6.104)

The matrix A is block tri-diagonal where each block is (M − 1) × (M − 1) and there are (N − 1)

blocks on the main diagonal. Different discretizations lead to different banded matrices. For exam-

ple, fourth order central differencing will result in a block penta-diagonal matrix. For the second

order discretization used here, efficient direct solution techniques have been developed. However,

for complex geometries with non-uniform meshes, the matrix structure may not be amiable to di-

rect solution. In these cases one often uses an iterative method to obtain an approximate solution.

6.8.2 Iterative methods

In the following sections we consider the solution of (6.104) using iterative methods. It is important

to remember that the system of algebraic equations is general — it may or may not have been

derived from the numerical solution to a PDE. To derive our iterative method, let A = A1 − A2.

Then equation (6.104) can be written as

A1x = A2x + b (6.105)

84 Chapter 6. Partial Differential Equations

and an iterative method is obtained by writing

A1x(k+1) = A2x(k) + b (6.106)

where k = 1, 2, 3, . . . is the iteration index. In order to obtain a useful iterative method, the

following two conditions must be met

1. The matrix A1 must be easy to solve. Otherwise we might as well solve the original system.

2. The iterations must converge (hopefully rapidly). We can state this mathematically as

lim
k→∞

x(k) = x (6.107)

To determine convergence, let’s define the error at the kth iteration as

ε(k) = x − x(k) (6.108)

If we subtract (6.105) from (6.106) then

A1ε
(k+1) = A2ε

(k) (6.109)

or, upon solving for the new error

ε(k+1) = A−1
1 A2ε

(k) (6.110)

We can use this expression to relate the error at k to the initial error

ε(k) =
(
A−1

1 A2

)k
ε(0) (6.111)

and for convergence we must have

lim
k→∞

ε(k) = 0 (6.112)

We know from linear algebra that the powers of a matrix for large exponents go to zero if the

modulus of its eigenvalues are all less than 1. Thus the condition for convergence is that

ρ = |λi|max ≤ 1 (6.113)

where λi are the eigenvalues of the matrix A−1
1 A2, and ρ is the called the spectral radius of con-

vergence for the iterative method. The rate of convergence, and hence the performance, of any

iterative method applied to a matrix A depends on how it is decomposed into A1 and A2.

Chapter 6. Partial Differential Equations 85

6.8.3 Point Jacobi Method

The very simplest choice for the matrix A1 is the diagonal matrix which consists of the diagonal

elements of A. For the numerical solution of the Poisson equation in equation (6.102), A1 is the

diagonal matrix with -4 on the diagonal. The inverse A−1
1 is just a diagonal matrix with −1/4 on

the diagonal. The matrix A2 is easily derived by removing the diagonal and multiplying by -1.

Thus, if we apply point Jacobi to equation (6.102) then we obtain the iterative scheme

x(k+1) = −1
4
A2x(k) − 1

4
b (6.114)

Using the spatial index notation, this is just

φ
(k+1)
i,j =

1
4

[
φ

(k)
i+1,j + φ

(k)
i−1,j + φ

(k)
i,j−1 + φ

(k)
i,j+1

]
− 1

4
bi,j (6.115)

Starting with an initial guess φ
(0)
i,j we can easily compute improved approximations using equation

(6.115). There is no matrix to solve; the updated value is simply computed using an average of the

surrounding points from the previous iteration.

The convergence of this method depends on the eigenvalues of the matrix − 1
4A2 which in this

simple case are given by

λmn =
1
2

[
cos

mπ

M
+ cos

nπ

N

]
(6.116)

m = 1, 2, 3, . . . , (M − 1) n = 1, 2, 3, . . . , (N − 1) (6.117)

Clearly the method converges, since |λmn| ≤ 1 for all m and n. The largest eigenvalue magnitude

determines the convergence rate. If we expand (6.116) for large M and N we get

|λ|max = 1 − 1
4

[
π2

M2 +
π2

N2

]

+ . . . (6.118)

Thus, for large systems, |λ|max is only slightly less than 1 and the convergence of this method can

be very slow indeed. It is worth emphasizing that the matrix form of the iterative method (6.114)

is useful for analysis but should not be used to implement the method. One should always develop

an expression such as (6.115) that is used in coding the method on a computer.

6.8.4 Gauss-Seidel Method

To improve upon the convergence of the point Jacobi method for our Poisson problem, we can

realize that both φ
(k+1)
i−1,j and φ

(k+1)
i,j−1 are computed from equation (6.115) before φ

(k+1)
i,j . If instead of

86 Chapter 6. Partial Differential Equations

φ
(k)
i−1,j and φ

(k)
i,j−1 we use their updated values, which are presumably more accurate, then we obtain

the formula for the Gauss–Seidel method

φ
(k+1)
i,j =

1
4

[
φ

(k)
i+1,j + φ

(k+1)
i−1,j + φ

(k+1)
i,j−1 + φ

(k)
i,j+1

]
− 1

4
bi,j (6.119)

This is the equation that is used to code the Gauss–Seidel method for our example problem. In

order to analyze the convergence properties of Gauss–Seidel, we can write the method in terms of

the matrix decomposition

A = A1 − A2 (6.120)

where

A1 = D − L and A2 = U (6.121)

Here, D is the diagonal and L is the negative of the lower triangular part of A. Likewise, U is the

negative of the upper triangular part of A. Note that L and U are not to be confused with the usual

LU decomposition of A. Since A1 is lower triangular, it is easy to solve. In addition, it turns out

that for the problem under consideration, the eigenvalues of A−1
1 A2 are just the square of the point

Jacobi eigenvalues

λmn =
1
4

[
cos

mπ

M
+ cos

nπ

N

]2
(6.122)

m = 1, 2, 3, . . . , (M − 1) n = 1, 2, 3, . . . , (N − 1) (6.123)

Thus the Gauss–Seidel method converges twice as fast as point Jacobi. In more precise terms,

Gauss–Seidel requires half the number of iterations as point Jacobi to reduce the error to within a

certain tolerance.

6.8.5 Successive Over Relaxation (SOR)

We can further improve upon the Gauss–Seidel method by introducing the concept of Successive

Over Relaxation (SOR). To analyze this method, let’s begin with Gauss–Seidel in the form

(D − L)x(k+1) = Ux(k) + b (6.124)

If we denote the change in the solution between two consecutive iterations as

d = x(k+1) − x(k) (6.125)

Chapter 6. Partial Differential Equations 87

1 1.2 1.4 1.6 1.8 2

0.825

0.85

0.875

0.9

0.925

0.95

0.975

1

|λ|
m

a
x

ω

Figure 6.3: Maximum eigenvalue for SOR applied to the Poisson equation as a function of the
acceleration parameter, ω. These results are for a (32 × 32) two-dimensional, square mesh using
second order central differencing.

then for Gauss–Seidel we simply have

x(k+1) = x(k) + d (6.126)

The idea behind SOR is that we can attempt to accelerate convergence by introducing the

parameter ω such that

x(k+1) = x(k) + ωd (6.127)

where ω > 1 is called the acceleration parameter. Thus in SOR we find an intermediate solution,

x̃(k+1)

Dx̃(k+1) = Lx(k+1) + Ux(k) + b (6.128)

and then the solution at the next iteration is

x(k+1) = x(k) + ω(x̃(k+1) − x(k)) (6.129)

Notice that the SOR method is just a Gauss–Seidel predictor followed by an accelerated correction

to get the solution at k + 1. Applying SOR to our example problem, leads to

φ̃
(k+1)
i,j =

1
4

[
φ

(k)
i+1,j + φ

(k+1)
i−1,j + φ

(k+1)
i,j−1 + φ

(k)
i,j+1

]
− 1

4
bi,j (6.130)

φ
(k+1)
i,j = φ

(k)
i,j + ω(φ̃(k+1)

i,j − φ
(k)
i,j) (6.131)

88 Chapter 6. Partial Differential Equations

0 20 40 60 80 100 120
1.5

1.6

1.7

1.8

1.9

ω
o
p
t

Mesh size, M

Figure 6.4: Optimal acceleration parameter, ωopt for a square M × M Cartesian mesh.

which is used for all interior points.

To study the convergence properties of this solution we eliminate the intermediate solution and

obtain

x(k+1) = (I − ωD−1L)−1
[
(1 − ω)I + ωD−1U

]

︸ ︷︷ ︸
GSOR

x(k) + (I − ωD−1L)−1ωD−1b (6.132)

For convergence, the eigenvalues of the matrix GSOR must have magnitude less than one. For the

discretized Poisson equation that we have been studying, the eigenvalue are given by

λ =
1
4

[
µω +

√
µ2ω2 − 4(ω − 1)

]2
(6.133)

where µ is an eigenvalue of the point Jacobi method, GPJ = D−1(L + U).

In SOR we have the ability to optimize convergence by selecting the value of ω such that |λ|
is minimized. It turns out that there is not a point where dλ/(d)ω = 0 but there is an absolute

minimum in a plot of λ vs. ω. An example of such a plot is shown in figure 6.3 for a square mesh

with M = N = 32. From the figure we see that the minimum occurs at ω ≈ 1.82. Note that

dλ/dω is not defined at this value of ω since this is the location of a branch point (i.e. λ becomes

complex for ω > ωopt). One can derive an expression for the optimal ω for this problem

ωopt =
2

1 +
√

1 − µ2
max

(6.134)

Chapter 6. Partial Differential Equations 89

Recall from our analysis of point Jacobi, that µmax is just slightly less than 1. Figure 6.4 shows

the variation of ωopt with the problem size assuming a square mesh. For typical problems, the

optimum value for ω usually lies between 1.7 and 1.95. A closed form expression for ωopt, such as

equation (6.134), is usually not available and for more complicated systems of equations (i.e. on

a nonuniform mesh) one must find the optimal value of ω through numerical experimentation. A

good initial guess for ω is 1.8 and experimentation can be used to refine this value if needed.

6.8.6 Alternating Direction Implicit

The Alternating Direction Implicit (ADI) method was originally developed as a method for solving

the unsteady heat equation [4] but was later adapted to be used as an iterative method for solving

elliptic problems [2, 3]. By way of example, consider the Poisson equation

∇2u + f(x, y) = 0

Let’s introduce an artificial time, τ , such that

∂u

∂τ
= ∇2u + f

Then, using implicit Euler in τ and second order central in space

u(n+1) − u(n)

∆τ
− (δx + δy)u(n+1) = f

where δx and δy are the finite difference operators. This equation can be rewritten as

[I − ∆τδx − ∆τδy]u(n+1) = u(n) + ∆τf

It is often useful in iterative methods to solve for the correction, ∆u(n) = u(n+1) − u(n), instead of

solving directly for the solution, u(n+1). In this case, we have

[I − ∆τδx − ∆τδy] ∆u(n) = ∆τ
[
(δx + δy)u(n) + f

]

where the right-hand-side is just ∆τ times the residual of the original equation evaluated at n.

When the iteration converges, the residual will be identically zero. Using approximate factorization

leads to

(I − ∆τδx) (I − ∆τδy) ∆u(n) = ∆τ
[
(δx + δy)u(n) + f

]

90 Chapter 6. Partial Differential Equations

Thus we can write the ADI scheme as

(I − ∆τδx) ∆u(n) = ∆τ
[
(δx + δy)u(n) + f

]

(I − ∆τδy) ∆u(n) = ∆u(n)

As for the heat equation, we have converted a large two-dimensional system of equations into a

series of one-dimensional tri-diagonal systems of equations in x and y.

6.9 Methods for Hyperbolic Equations

In the previous sections, we have used the one-dimensional wave equation

∂u

∂t
+ c

∂u

∂x
= 0 (6.135)

as a model for hyperbolic PDEs. As a generalization of this model, we introduce the generic

one-dimensional conservation law of the form

∂u

∂t
+

∂f(u)
∂x

= 0 (6.136)

where f(u) is the flux function for u-stuff in the x-direction. Note that usually f is a nonlinear

function of u. When the spatial derivative is written in the form of the divergence of a flux function,

then we say that the equation is in conservative form. Starting from (6.136) we can construct the

corresponding nonconservative form by using the chain-rule for differentiation

∂u

∂t
+ a(u)

∂u

∂x
= 0 (6.137)

where a(u) = ∂f/∂u. If instead of a scalar equation, we have a vector conservation law

∂�u

∂t
+

∂ �f

∂x
= 0 (6.138)

Then the nonconservative form is
∂�u

∂t
+ A(�u)

∂�u

∂x
= 0 (6.139)

where Aij = ∂fi/∂uj are the components of the Jacobian matrix, A.

Chapter 6. Partial Differential Equations 91

6.9.1 Lax-Fredrich Method

The Lax-Fredrich method starts with explicit Euler in time and second-order central in space.

u
(n+1)
i = u

(n)
i − ∆t

2∆x

(
f

(n)
i+1 − f

(n)
i−1

)
(6.140)

From the modified wave number analysis, we know that this method is unstable. To correct for

this, we approximate u
(n)
i with

u
(n)
i ≈ u

(n)
i+1 + u

(n)
i−1

2
(6.141)

which yields

u
(n+1)
i =

u
(n)
i+1 + u

(n)
i−1

2
− ∆t

2∆x

(
f

(n)
i+1 − f

(n)
i−1

)
(6.142)

This method is O(∆x2, ∆t) and it is easy to show with a von Neumann analysis that it is linearly

stable for CFL ≤ 1. For CFL = 1 the spatial and temporal errors cancel given a nodally exact

method for linear constant coefficient equations.

6.9.2 Lax-Wendroff Method

The Lax-Wendroff method is a second-order space-time method that is based upon a central differ-

ence for the spatial derivatives with a second-order Taylor series method in time. Let’s begin with

a Taylor series expansion of the form

u(n+1) = u(n) + ∆t
∂u

∂t

∣∣∣∣∣
n

+ ∆t2
∂2u

∂t2

∣∣∣∣∣
n

+ O(∆t3) (6.143)

From the PDE we know that
∂u

∂t
= −∂f

∂x
(6.144)

and
∂2u

∂t2
=

∂

∂x

(
∂f

∂u

∂f

∂x

)

=
∂

∂x

(

a(u)
∂f

∂x

)

(6.145)

so that for a globally second-order method we have

u(n+1) = u(n) − ∆t
∂f

∂x

∣∣∣∣∣
n

+ ∆t2
∂

∂x

(

a(u)
∂f

∂x

) ∣∣∣∣∣
n

(6.146)

92 Chapter 6. Partial Differential Equations

The method is completed by using second-order central difference operators leading to a fully

discrete method given by

u
(n+1)
i = u

(n)
i − ∆t

2∆x

(
f

(n)
i+1 − f

(n)
i−1

)
+

∆t2

∆x2

[
a

(n)
i+1/2(f

(n)
i+1 − f

(n)
i) − a

(n)
i−1/2(f

(n)
i − f

(n)
i−1)
]

(6.147)

where a
(n)
i+1/2 = (a(n)

i +a
(n)
i+1)/2 and a

(n)
i−1/2 = (a(n)

i +a
(n)
i−1)/2. For systems of nonlinear equations the

Jacobian of the flux function, A(�u) is required which makes this method somewhat inconvenient.

However, for the constant coefficient linear wave equation the method simply becomes

u(n+1) = u(n) − c∆t
∂u

∂x

∣∣∣∣∣
n

+ c2∆t2
∂2u

∂x2

∣∣∣∣∣
n

(6.148)

with second-order first and second derivatives approximations in space. The method is O(∆t2, ∆2)

and linearly stable for CFL ≤ 1. Thus, this is the first explicit second-order accurate method that

we have introduced for hyperbolic equations.

6.9.3 Richtmyer Method

The Richtmyer method addresses the limitation of the Lax-Wendroff method for nonlinear equa-

tions. The method is given by a Lax-Fredrich predictor followed by a Leapfrog/Central corrector.

For the model problem this yields

u
(n+1)
i =

u
(n)
i+1/2 + u

(n)
i−1

2
− ∆t

4∆x

(
f

(n)
i+1 − f

(n)
i−1

)
(6.149a)

u
(n+1)
i = u

(n)
i − ∆t

2∆x

(
f

(n+1/2)
i+1 − f

(n+1/2)
i−1

)
(6.149b)

The reader should show that this method is O(∆t2, ∆x2) and is stable for CFL ≤ 1. For linear

problems this method is identical to the Lax-Wendroff method.

6.9.4 MacCormack Method

One of the most popular explicit methods in CFD is the MacCormack method, developed by Robert

MacCormack in the early 1970’s. This method is simple, second-order accurate in space and time,

and is fully explicit. And, like the Richtmyer method, MacCormack’s method does not require

Jacobians.

It is easiest to demonstrate the method through an example by applying it to the model equation

Chapter 6. Partial Differential Equations 93

(6.136) as follows

ui = u
(n)
i − ∆t

∆x

(
f

(n)
i+1 − f

(n)
i

)
Predictor (6.150a)

u
(n+1)
i =

1
2

[
u

(n)
i + ūi − ∆t

∆x

(
f i − f i−1

)]
Corrector (6.150b)

which can be interpreted as an explicit Euler predictor with forward difference and an explicit Euler

corrector with backward difference. Assuming that information propagates in the +x-direction,

the predictor stage is known to be unstable, while the corrector stage is stable, but over diffuse.

MacCormacks method amounts to the average of these two methods where the result is a second

order accurate method that is stable for CFL ≤ 1. For linear problems with CFL = 1 the solution

is nodally exact since the errors in space and time exactly cancel. MacCormack’s method can also

be written in the following symmetric form

ui = u
(n)
i − ∆t

∆x

(
f

(n)
i+1 − f

(n)
i

)
Predictor (6.151a)

u
(n)
i = u

(n)
i − ∆t

∆x

(
f i − f i−1

)
Corrector (6.151b)

u
(n+1)
i =

1
2

(ui + ui) (6.151c)

which suggests the alternative method

ui = u
(n)
i − ∆t

∆x

(
f

(n)
i − f

(n)
i−1

)
Predictor (6.152a)

u
(n)
i = u

(n)
i − ∆t

∆x

(
f i+1 − f i

)
Corrector (6.152b)

u
(n+1)
i =

1
2

(ui + ui) (6.152c)

where the order of the forward and backward differences is reversed. For linear problems, the

switch in order has no effect but for nonlinear flux functions, the results will be different between

the two methods. Generally speaking, the first method works better for left-to-right shocks while

the second methods is preferable for right-to-left shocks.

94 Chapter 6. Partial Differential Equations

Figure 6.5: Example mesh for conservative discretization

6.9.5 Conservative Discretizations

Integrating equation (6.136) over a domain x ∈ [A, B] yields

∫ xB

xA

∂u

∂t
dx +

∫ xB

xA

∂f(u)
∂x

dx = 0 (6.153)

since the second term is a perfect integral, we obtain

∫ xB

xA

∂u

∂t
dx + f(u)|xB

− f(u)|xA
= 0 (6.154)

If instead, we had divided the original domain from A to B into three subdomain, we could have

performed the same integration leading to (6.154) by integrating over each subdomain and sum-

ming the results from each subdomain. Since all interior fluxes cancel, we are left with the same

result as if we had originally integrated on a single large domain.

This conservation property is automatically satisfied in the continuous case, but we have to be

very careful to make sure that it is retained after discretization. For example, consider the mesh

shown in figure 6.5. Using a second-order central discretization in space leads to the semi-discrete

equation at node i of the form

∂ui

∂t
+

1
∆x

(
fi+1/2 − fi−1/2

)
= 0 (6.155)

with similar equations at nodes i + 1 and i − 1. If we sum the discrete equations at i − 1, i, and

i + 1 then we obtain

1
3

∂

∂t
(ui−1 + ui + ui+1) +

1
3∆x

(
fi+3/2 − fi−3/2

)
= 0 (6.156)

which is a consistent discretization of the original equation on the larger domain, A − B in fig-

ure 6.5. The essential requirement for this to be true is that all interior fluxes cancel, just like in the

continuous case, leaving only the fluxes evaluated at the outer boundaries. A numerical method

which has this property guarantees global conservation.

In general, a conservative discretization of the scalar model problem (6.136) can be written in

the form

u
(n+1)
i = u

(n)
i − ∆t

∆x

(
f ∗

i+1/2 − f ∗
i−1/2

)
(6.157)

Chapter 6. Partial Differential Equations 95

where f∗i is the numerical flux for a given method. If the method can be written in this form, then

it is discretely conservative.

As an example, MacCormack’s method is given by the numerical flux

f ∗
i+1/2 =

f
(n)
i+1 + f i

2
(6.158)

which demonstrates that MacCormack is a conservative numerical method.

Similarly, the numerical flux for the Lax-Wendroff method is

f ∗
i+1/2 =

1
2

(
f

(n)
i+1 + f

(n)
i

)
− ∆t

∆x
a

(n)
i+1/2(f

(n)
i+1 − f

(n)
i) (6.159)

which indicates that this is also a conservative numerical method, although the numerical flux is

quite a bit for complex than that for MacCormack.

6.9.6 Nonconservative Discretizations

To see the effect of a nonconservative numerical method, let’s start with the nonconservative form

of the model problem
∂u

∂t
+ a(u)

∂u

∂x
= 0 (6.160)

and use a simple second-order discretization of the form

∂ui

∂t
+

ai

∆x

(
ui+1/2 − ui−1/2

)
= 0 (6.161)

where ai = (ai+1/2 + ai−1/2)/2 and we can write similar equations at nodes i + 1 and i − 1.

Summing the discrete equations at i − 1, i, and i + 1 leads to

1
3

∂

∂t
(ui−1 + ui + ui+1) +

(ai+3/2 + ai−3/2)
2

1
3∆x

(
ui+3/2 − ui−3/2

)
=

(ai+3/2 − ai−1/2)
(ui+1/2 − ui−3/2)

6∆x
− (ai+1/2 − ai−3/2)

(ui+3/2 − ui−1/2)
6∆x

=

∆x2 [(a,xu,x),x − (a,xu,xx)] (6.162)

which is not consistent with a discretization on the larger interval from A to B. The difference

is due to the numerical source term which result from the incomplete cancelation of interior nu-

merical fluxes. Although (6.161) is nonconservative, it is of course still a second-order accurate

discretization of the PDE. However, the errors appear here as numerical sources of quantity u

96 Chapter 6. Partial Differential Equations

which are not present in the continuous equation or in the conservative discretization. The result

is that if you use a nonconservative equation for a problem in which mass is supposed to be a con-

served quantity, unlike a conservative discretization, the nonconservative numerical solution will

not hold a constant mass. In some cases this can lead to significant errors, especially when there

are regions of marginally or under-resolved gradients. The classic example of this in CFD is shock

capturing where the grid is intentionally too coarse to represent the sharp gradients of a shock

wave. Under these conditions, a conservative method will still give the correct jump in quantities

across the shock (the Rankine–Hugoniot relations) while a nonconservative formulation will not.

6.10 Example: Inviscid Burgers Equation

As an example of the various methods for hyperbolic equations that we have disussed, consider the

inviscid Burgers equation
∂u

∂t
+ u

∂u

∂x
= 0. (6.163)

By defining the flux function f(u) = u2/2 then we can rewrite Burgers equation in the conservation

form
∂u

∂t
+

∂f

∂x
= 0. (6.164)

This equation is solved on the domain x ∈ [0, 4] subject to the boundary condition and initial

condition

u(0, t) = 1 u(x, 0) =

⎧
⎨

⎩
1 0 ≤ x ≤ 2

0 2 < x ≤ 4
(6.165)

This problem is solved using the Lax-Friedrich, Richtmyer, and MacCormack methods and the

solutions are shown in figure 6.6 all for CFL = 1 and 101 node points in x.

Remarks:

1. The Lax-Friedrichs solution is too dissipative with the shock spread over and increasing

number of grid points as time increases. This is inaccuracy is not surprising since the method

is only first-order in time.

2. The Richtmyer solution is plaqued by dispersion errors which lead to oscillations (mainly

overshoots) in the solution near the shock.

3. Of the three methods, MacCormack gives the best solutions with the shock spread consis-

tently over four cells with no oscillations. In fact, it can be proved that the MacCormack

method provides the optimal dissipation for this problem.

Chapter 6. Partial Differential Equations 97

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

0 0.5 1 1.5 2 2.5 3 3.5 4

u

x

Lax-Friedrichs, dx=0.1, dt=0.1

t=0
t=0.6
t=1.2
t=1.8

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

0 0.5 1 1.5 2 2.5 3 3.5 4

u

x

Richtmyer�s Scheme, dx=0.1, dt=0.1

t=0
t=0.6
t=1.2
t=1.8

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

0 0.5 1 1.5 2 2.5 3 3.5 4

u

x

MacCormack�s Scheme, dx=0.1, dt=0.1

t=0
t=0.6
t=1.2
t=1.8

Figure 6.6: Propagating shock problem solved using three numerical methods: Lax-Friedrich,
Richtmyer, and MacCormack (from top to bottom) with Nx = 101 and CFL = 1.

Chapter 7

Numerical Solution of the Navier–Stokes

Equations

Note: This chapter is preliminary, but is included in this form in the hope that it contains some

information of use to the reader.

7.1 Navier–Stokes

The incompressible Navier–Stokes equations for velocity vector u and pressure p are given by

ρ
∂u

∂t
+ (u · ∇)u + ∇p = µ∇2u (7.1a)

∇ · u = 0 (7.1b)

where ρ is the fluid density (mass per unit volume) and mu is the coefficient of viscosity. The

first equation represents conservation of linear momentum while the second equation enforces

conservation of mass or continuity. This form of the Navier–Stokes equations is very general

since the vector notation makes it independent of coordinate system and the number of spatial

dimensions. Often we will find it convenient to work in Cartesian coordiates were we can rewrite

the Navier–Stokes equations using the concise form

ρui,t + ρujui,j + p,i = µui,jj (7.2a)

ui,i = 0 (7.2b)

where subscripts preceeding a comma indicate the spatial coordinate and subscripts after a comma

denote differentiation. As a general rule, repeated indices imply summation over all the possible

combinations (the Einstein summation convention). Thus, in three spatial-dimensions the velocity

vector is given by u = {u1, u2, u3}T = {u, v, w}T ,

ui,jj ≡ ui,11 + ui,22 + ui,33, (7.3)

99

100 Chapter 7. Numerical Solution of the Navier–Stokes Equations

and

ujui,j ≡ u1ui,1 + u2ui,2 + u3ui,3 . (7.4)

The form of the Navier-Stokes momentum equation given above (7.2a) is in a nonconserva-

tive form. Using the continuity equation, we can easily varify that the conservation form of the

momentum equation is

(ρui),t + (ρujui),j + p,i = (µui,j),j (7.5)

where each term can now be interpretted as the flux of a quantity in either space or time. Note

that in constructing this equation from (7.2a) we must assume that ρ and mu are constants in

space and/or time. In general, (7.5) is actually the correct form which allows for variable fluid

properties. Here we will limite ourselves to constant properties so that by introducing a suitable

set of reference scales, we can write the equations in nondimensional form as

ui,t + (ujui),j + p,i =
1

Re
ui,jj (7.6a)

ui,i = 0 (7.6b)

where Re = ρUL/µ is the reference Reynolds number, U is a reference velocity, and L is a

reference length.

Now we are ready to consider discretizations of the Navier–Stokes system. However, we are

first met immediately by a harsh reality: there is no dynamic equation for pressure, and likewise,

the continuity equation has no time derivative. This is in fact the primary difficulty of CFD for

incompressible flows and there are a variety of ways to overcome this impediment documented in

the liturature. Instead of reviewing all the options, we will take one particular solutions and discuss

it in detail

7.2 The Fractional Step Method

One way to think of the continuity equation is that it imposes a constraint on the velocity field

that such that the velocity must always be a divergence-free vector field. Under this interpretation,

the pressure then plays the role of a Lagrange multiplier that is used to enforce the divergence

free constraint. To derive an explicit equation for the pressure, we can take the divergence of the

momenutum equations (7.5),i which yields

p,ii = −(ujui),ij (7.7)

Chapter 7. Numerical Solution of the Navier–Stokes Equations 101

which we recognize as simply a Poisson equation for the pressure. Thus, one approach is to

discretize the momentum equation and solving an appropriate Poisson equation for the pressure to

ensure that the velocity field is divergence-free. This is the so-called fractional-step method.

To keep things simple, let’s first a semi-discrete method using explicit Euler in time. The

Navier–Stokes equations can then be written in the form

⎡

⎣ I ∆t∇
∇· 0

⎤

⎦

⎧
⎨

⎩
u(n+1)

p(n+1)

⎫
⎬

⎭ =

⎧
⎨

⎩
r(n)

0

⎫
⎬

⎭ (7.8)

where

r(n) = u(n) − ∆t
[
(u · ∇)u − 1

Re
∇2u

](n)

(7.9)

and we have used the vector notation for brevity. This equation can be factored into

⎡

⎣ I 0

∇· −∆t∇ · ∇

⎤

⎦

⎡

⎣ I ∆t∇
0 I

⎤

⎦

⎧
⎨

⎩
u(n+1)

p(n+1)

⎫
⎬

⎭ =

⎧
⎨

⎩
r(n)

0

⎫
⎬

⎭ (7.10)

which can be decomposed into two systems:

⎡

⎣ I 0

∇· −∆t∇ · ∇

⎤

⎦

⎧
⎨

⎩
û(n+1)

p̂(n+1)

⎫
⎬

⎭ =

⎧
⎨

⎩
r(n)

0

⎫
⎬

⎭ (7.11a)

⎡

⎣ I ∆t∇
0 I

⎤

⎦

⎧
⎨

⎩
u(n+1)

p(n+1)

⎫
⎬

⎭ =

⎧
⎨

⎩
û(n+1)

p̂(n+1)

⎫
⎬

⎭ (7.11b)

This leads to the method:

û(n+1) = r(n) (7.12a)

∇2p̂(n+1) = ∇ · ∇p̂(n+1) =
1

∆t
∇ · û(n+1) (7.12b)

u(n+1) = û(n+1) − ∆t∇p̂(n+1) (7.12c)

This is the basic idea behind the fractional step method. In eccense, the momentum equation is

solved without the pressure gradient giving an intermediate velocity, û. Then a Poisson equation

is solved for the pressure which is used to project the intermediate velocity to be divergence-free.

A slight, but important modification of this method is to rewrite the equation in the so-called

delta-form ⎡

⎣ I ∆t∇
∇· 0

⎤

⎦

⎧
⎨

⎩
δu(n+1)

δp(n+1)

⎫
⎬

⎭ =

⎧
⎨

⎩
r(n) − u(n) − ∆t∇p(n)

0

⎫
⎬

⎭ (7.13)

102 Chapter 7. Numerical Solution of the Navier–Stokes Equations

which leads to the method:

δû(n+1) = r(n) − u(n) − ∆t∇p(n) (7.14a)

∇2δp̂(n+1) = ∇ · ∇δp̂(n+1) =
1

∆t
∇ · δû(n+1) (7.14b)

u(n+1) = u(n) + δû(n+1) − ∆t∇δp̂(n+1) (7.14c)

The effect of working in the delta form is that we can see from (7.14c) that the û velocity is a

second-order approximation to the velocity u(n+1) so that we can use the same boundary conditions

on the û as used for u.

In the spatially continuous case (which is what we have done so far) everything is fine. How-

ever, when we introduce finite-difference approximations for the spatial derivatives, we may in-

troduce an instability if we do not handle the pressure carefully. This instability results from an

overspecification of the pressure leading to checkboard type oscillations in the pressure that are

unphysical. The classical approach to correcting this is to use fewer pressure nodes compared to

velocity nodes. This approach often takes the form of a staggered mesh where the pressure nodes

are at cell centers and the velocity nodes are at cell faces.

7.3 Upwinding and Numerical dissipation

In the early day of computational fluid dynamics, it was recognized that Galerkin and other “cen-

tral” difference type methods can have difficulties for fluid flows that are advection dominated.

Since most of the early work in CFD was based on finite difference methods, we take a small

diversion and review the subject of upwind finite difference methods which have been developed

to address the limitations of central difference methods. We then, review the more recent advances

in “upwind” or stabilized methods for finite element discretizations such as SUPG and GLS. Our

motivation for exploring upwind and stabilized methods is that we have the goal of applying the

techniques of optimal control, discussed in previous chapters for the linear advection-diffusion

equations, to problems in fluid mechanics where upwind type methods are commonly used. Specif-

ically, we want to explore the impact of these numerical methods for computing adjoint quantities

required to solve optimal control problems.

Chapter 7. Numerical Solution of the Navier–Stokes Equations 103

7.4 Finite Difference Methods

7.4.1 Model problem

Consider the simple, steady, one-dimensional advection diffusion equation

ay′(x) − νy′′(x) = 0 in (0, 1),

y(0) = 0,

y(1) = 1

where a is the convection velocity and ν is the diffusion (or viscosity) coefficient. This equation

with boundary conditions has the exact solution

y(x) =
exp
(

ax
ν

)
− 1

exp
(

a
ν

)
− 1

.

and the solution has a boundary layer located at x = 1 for large values of the ratio a/ν.

7.4.2 Central Difference

Since the initial research in upwind methods was in the context of finite difference, we briefly

consider a finite difference solution to equation (7.15). First, let’s try a central difference approxi-

mation

a
yh

i+1 − yh
i−1

2h
− ν

yh
i+1 − 2yh

i + yh
i−1

h2 = 0,

where yh
i denotes our numerical solution at node point i. Multiplying through by 2h/a gives

yh
i+1 − yh

i−1 − ν2
ah

(
yh

i+1 − 2yh
i + yh

i−1

)
= 0,

And we recongnize the parameter α = ah/2ν as a Reynolds number, often called the element or

local Reynolds number since the reference length is h, the local element size. If α > 1 then locally

the flow is convection dominated for the mesh under consideration and typically central difference

type methods lead to solutions with numerical oscillations. For the first example problem, where

you had ν = 0.01 and a = 1, you would observe oscillations for h > 0.02 which means that you

would need a mesh with ne > 50 to get a smooth solution with a uniform mesh. Figure 7.4.2

104 Chapter 7. Numerical Solution of the Navier–Stokes Equations

y
h
,y

x
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.4

0.2

0

0.2

0.4

0.6

0.8

1

(a) α = 2

y
h
,y

x
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) α = 2/3

Figure 7.1: Numerical solutions to (7.15) using second order central differences (◦) compared
to the exact solution (): (a) α = 2, ne = 25; (b) α = 2/3, ne = 75.

shows the effect of element Reynolds number on the quality of the numerical solution to (7.15)

using central differences – for α = 2 the numerical solution has large, nonphysical oscillations,

while for α = 2/3 the solution is smooth. From this figure it appears that the central difference

approximation is underdiffuse. Using a uniform mesh that gives α ≤ 1 is prohibitively expensive,

since the only region where high resolution is required is in the boundary layer. The only hope for

smooth, efficient solutions is to design a nonuniform mesh which ensures that locally the element

Reynolds number is less than one and this was exactly what you did in the first homework set. The

bottomline is that central difference methods can place rather severe resolution requirements for

convection dominated flows and this has lead to the development of upwind type methods in an

attempt to circumvent this.

7.4.3 Upwind Difference

Consider the upwind difference of the same advection diffusion equation where we assume that

a > 0 so that

a
yh

i − yh
i−1

h
− ν

yh
i+1 − 2yh

i + yh
i−1

h2 = 0.

Notice that we have applied a backward difference formula for the convection term that is “upwind”

for positive a, while we have retained the central difference approximation to the second derivative.

By using an upwind difference on the advection term, we are recognizing that the advection term

moves information from left to right for positive a. Thus, we use a finite difference formula that is

biased towards the left.

Chapter 7. Numerical Solution of the Navier–Stokes Equations 105

y
h
,y

x
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.2

0

0.2

0.4

0.6

0.8

1

1.2

(a) α = 2

y
h
,y

x
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) α = 2/3

Figure 7.2: Numerical solutions to (7.15) using first-order upwind differences (◦) compared
to the exact solution (): (a) α = 2, ne = 25; (b) α = 2/3, ne = 75.

Although this method is only first order accurate, the introduction of the upwind difference

will provide oscillation free solutions as shown in figure 7.4.3, even for large values of α. Unfor-

tunately, we see that due to the first-order accuracy of the upwind first-derivative approximation,

the accuracy of the solution is not very good. In fact, even for small α the method is overdiffuse.

One way of correcting this is to use higher-order one-sided and biased difference formulae. In

general, these will have less inherent numerical dissipation than the first-order methods discussed

here so that you could tune the difference formula to provide an appropriate amount of dissipation.

Unfortunately, this may require a different finite difference formula for each problem solved.

Another approach to reducing the inherent dissipation in the first-order upwind scheme is to

rewrite the upwind formulation in the following way

a
yh

i+1 − yh
i−1

2h
−
(

ν +
h|a|
2

)
yh

i+1 − 2yh
i + yh

i−1

h2 = 0 (7.15)

which we see is equivalent to using central differences for the advection term but with an added

numerical dissipation coefficient of h|a|/2 that depends on the mesh spacing.1 Of course, as h → 0

the numerical dissipation approaches zero, but only at first-order. Since we showed that the amount

of diffusion naturally present in the upwind scheme is too much while that in a pure central scheme

is underdiffuse, we could consider introducing a numerical viscosity parameter, ξ̃, which we tune

1I have used |a| here so that this method works for both positive and negative a.

106 Chapter 7. Numerical Solution of the Navier–Stokes Equations

y
h
,y

x
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) α = 2

y
h
,y

x
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) α = 2/3

Figure 7.3: Numerical solutions to (7.15) using tunned second-order dissipation (◦) compared
to the exact solution (): (a) α = 2, ne = 25; (b) α = 2/3, ne = 75.

to give the best solution. The method would then be,

a
yh

i+1 − yh
i−1

2h
−
(

ν + ξ̃
h|a|
2

)
yh

i+1 − 2yh
i + yh

i−1

h2 = 0 (7.16)

and it turns out that for a given α, one can select a value of ξ̃(α) = coth(α) − 1/α such that the

solution is nodally exact as shown in figure 7.4.3 [1]. We have apparently achieved the holy grail

of numerical analysis. The catch, or course, is that while we may be able to construct ξ̃(α) for

this simple one-dimensional linear model problem, in more realistic situations this is not generally

possible. In particular, in multidimensions, upwind solutions often exhibit excessive dissipation

normal to the flow direction. Likewise, problems can also occur in transient problems and equa-

tions with strong source terms. However, we can use the experience gleaned from upwind methods

as guidence in designing numerical methods for more complex problems.

7.4.4 Interpretation in terms of Iterative Methods

We can also view the influence of the advection term from a linear algebra point of view by ac-

cessing the impact of discretization on the spectral radius of standard iterative methods for solving

linear systems of equations. All of the methods discussed so far can be written in the form

Myh = r (7.17)

where yh = {yh
1 , yh

2 , . . . , yh
n}T with n equal to the number of node points. In this expression, M

is a n × n matrix and r = {r1, r2, . . . , rn}T is composed of all terms not explicitly dependent on

Chapter 7. Numerical Solution of the Navier–Stokes Equations 107

yh including boundary conditions. For all the discretizations presented so far, the matrix M has a

tridiagonal structure. It is instructive to examine the structure of the different matrices arising from

each method. For the central difference method

M central =
a

2h
B[−1, 0, 1] − ν

(h)2B[1, −2, 1] (7.18)

where B[a, b, c] denotes a tridiagonal matrix with lower diagonal a, diagonal b, and upper diagonal

c. For the first-order upwind method

Mupwind =
a

h
B[−1, 1, 0] − ν

(h)2 B[1, −2, 1] (7.19)

and for the tuned dissipation method

M tuned =
a

2h
B[−1, 0, 1] − ν + ξ̃ h|a|

2

(h)2 B[1, −2, 1] . (7.20)

From these expressions, we can draw the following general conclusions:

1. Central difference discretization of the diffusion term leads to a symmetric, positive definite,

contribution to the system matrix – all the eigenvalues of this matrix are real and greater than

zero (for ν > 0).

2. In contrast, a central difference approximation to the advection term results in a skew-

symmetric contribution to M . The eigenvalues of this contribution are all pure imaginary.

3. For large α, the skew-symmetric component for the central scheme dominates the symmetric

component of the matrix M . This results in a matrix that is not diagonally dominate. In fact,

for α > 1, iterative methods like point Jacobi, and Guass–Seidel will not even converge.

4. For the upwind method, we see that the advection contribution is lower triangular, with a

positive diagonal. Thus, for all α the advection term increases the diagonal dominance of

M resulting in unconditional convergence for point Jacobi and Gauss–Seidel.

5. Similarly, we see that for the tuned dissipation approach, the added term increases the diag-

onal dominance of the matrix M as long as ξ̃ > 0. If the optimal value of ξ̃ is used then

point Jacobi and Gauss–Seidel will converge for all α.

Thus, the addition of numerical dissipation through either upwind differences or an explicit

dissipation term leads to matrices that are better suited to iterative solution techniques. This turns

108 Chapter 7. Numerical Solution of the Navier–Stokes Equations

k̃
h

α
0 0.5 1 1.5 2

0

1

2

3

4

5
(a) Real

k̃
h

α
0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3 (b) Imaginary

Figure 7.4: Comparison of the real (a) and imaginary (b) components of k̃h as a function of α for
the exact and optimally tuned solution , the central difference scheme , and the upwind
method .

out to be one of the major advantages of upwind and stabilized schemes when applied to very large

advection dominated problems.

7.5 Theoretical perspective

The analytical solutions to the steady advection-diffusion equation with constant coefficients are

of the form

y(x) = ỹ0 + ỹ1e
ax/ν (7.21)

where the two unknown coefficients are determined by the boundary conditions. Thus, without

loss of generality we can consider fundamental solutions of the form

y(x) = ỹekx (7.22)

Plugging this expession into the exact equation leads to

kh − 1
α

(kh)2

2
= 0. (7.23)

where we have introduced the mesh size h for convenience in comparision with the discrete results

below. The exact solutions to this characteristic equation are; kh = 0 and kh = 2α which is in

agreement with (7.21).

Similarly, the discrete solutions are assumed to be of the form

yi = ỹek̃xi (7.24)

Chapter 7. Numerical Solution of the Navier–Stokes Equations 109

which, when substituted into the central difference approximation leads to

sinh(k̃h) +
1
α

[1 − cosh(k̃h)] = 0 (7.25)

Solving this approximate characteristic equation leads to

k̃h = 0, k̃h = cosh−1

(
1 + α2

1 − α2

)

(7.26)

Figure 7.5 shows a comparison of the nontrivial roots as a function of α. As expected, for small

α the central difference method is in good agreement with the exact solution. However, as α

approaches one from below, the central difference scheme overpredictes the exact growth factor

indicated that the method is underdiffuse. For α > 1 the central difference k̃h becomes complex

with the imaginary component always �(k̃h) = π. This means that the numerical solution will

have oscillations with wavelength equal to 2h for all α > 1. These are the so-called node-to-

node oscillations or 2δ waves commonly seen in underresolved numerical solutions using central

differencing. The real part of k̃h actually indicates that the solution is overdiffuse for α > 1.25

which accounts for the fact that the oscillations tend to spread out for large α.

If instead of central difference, we used the upwind method, then we would get the character-

istic equation

sinh(k̃h) +
(1

α
+ 1
)

[1 − cosh(k̃h)] = 0 (7.27)

which yields

k̃h = 0 k̃h = cosh−1

(
1 + 2α + 2α2

1 + 2α

)

(7.28)

while for the optimally tuned dissipation we get

sinh(k̃h) + coth(α)[1 − cosh(k̃h)] = 0 (7.29)

which yields k̃h = 0 and k̃h = 2α in agreement with the exact solution. The nontrivial k̃h are

plotted in figure 7.5 for all methods. Clearly, the upwind method is overdiffuse for all α, but the

imaginary part is zero indicating that solutions are oscillation free.

So far we have focused on the advection-diffusion model problem. It is also instructive to look

at the resolving characteristics of individual finite difference approximations. Assume that we have

a uniform mesh where the function y satisfies periodic boundary conditions such that

y(x) = ỹeikx (7.30)

110 Chapter 7. Numerical Solution of the Navier–Stokes Equations

where k is the wavenumber and i =
√−1. Note that in the general case we would have a summa-

tion of complex exponentials over a range of wavenumbers, but it is sufficient to consider a single

mode of this summation here.

With this form, the first derivative is given by

dy

dx
= ikỹeikx (7.31)

In practice, we must approximate the derivatives using, say, a finite difference formula. If we use

the second order central difference scheme then

dyi

dx
=

yi+1 − yi−1

2h
(7.32)

if we assume that the discrete function can be written in the form

yi = ỹeikxi (7.33)

then we get
dyi

dx
=

ỹ

2h

(
eikxi+1 − eikxi−1

)
= i

sin(kh)
h

ỹ = ik̃ỹ (7.34)

Thus, we see that the finite difference approximation leads to the same form of the derivative except

with a modified wave number, k̃ = sin(kh)/h instead of the real wave number, k. Figure 7.5 shows

a plot of the modified wave number for the central difference scheme. As you can see, the finite

difference scheme only does a reasonable job of approximating the real wavenumber for kh < 1

which cooresponds to ne/wave > 2π. Thus you must have more that 6 cells per wavelength in

the solution to get accurate results. One can see that the errors in the finite difference scheme for

kh > 1 are such that the modified wavenumber is less than the exact wavenumber. This means that

for unsteady problems (like the wave equation) the high wavenumber components of the numerical

solution will travel with a phase speed that is too low – the error is dispersive. In fact, the mode

with kh = π will have zero phase speed, while this is the fastest moving component of the exact

solution. However, since the wavenumbers are all real, there are no dissipative errors in the central

difference approximation. That is why you will sometimes hear people say that central difference

methods have no numerical diffusion. However, the disspersion errors manifest themselves as

oscilations in the solution as energy is distributed incorrectly in space.

The same approach can be taken for the second derivative, and the standard central difference

Chapter 7. Numerical Solution of the Navier–Stokes Equations 111

k̃
h

kh
0.5 1 1.5 2 2.5 3

0.5

1

1.5

2

2.5

3
(a) First derivative

k̃
h

kh
0.5 1 1.5 2 2.5 3

0.5

1

1.5

2

2.5

3
(b) Second derivative

Figure 7.5: Comparison of the first (a) and second (b) derivative approxitions in terms of modified
wave number: exact solution and the central difference scheme .

approximation leads to a modified wave number given by

k̃h =
√

2[1 − cos(kh)] (7.35)

Figure 7.5 also shows this modified wavenumber again compared to the exact wavenumber. For

reasonable accuracy we require kh < 1.5 which is a little better than that for the first derivative.

Similar to the first derivative, the modifed wavenumber for the second derivative is less than the ex-

act wavenumber for large kh. Thus, the diffusion of the large wavenumber is underpredicted! This,

in fact, is the reason that central approxiations to the advection-diffusion equation have oscillations

on coarse grids – the numerical solution tends to be underdiffuse in the high wavenumbers.

We now return to the upwind difference approximation of the first derivative, realizing that

it can be written as a combination of central difference approximations to the first and second

derivatives

k̃h = sin(kh) + i(cos(kh) − 1) (7.36)

The real part is identical to the central difference, but now we have an imaginary component of the

wavenumber that is dissapative. Figure 7.5 shows the real and imaginary components as a function

of kh. For the high wavenumbers that have large errors in
(k̃h) the numerical dissipation is also

large so that these wavenumbers tend to be smoothed out.

7.5.1 Summary

In summary, the use of upwind methods was motivated by the desire to obtain accurate solutions

to advection dominated flows without having to resort to the excessive resolution required to get

smooth numerical solutions with standard central difference methods. Although upwind methods

112 Chapter 7. Numerical Solution of the Navier–Stokes Equations

k̃
h

kh
0.5 1 1.5 2 2.5 3

0.5

1

1.5

2

2.5

3
(a) Real

k̃
h

kh
0.5 1 1.5 2 2.5 3

-1.5

-1

-0.5

0

(b) Imaginary

Figure 7.6: Comparison of the real (a) and imaginary(b) components of the upwind first derivative
approximation in terms of modified wave number: exact solution and the upwind difference
scheme .

have the desirable characteristic that numerical dissipation is “automatically” included, the numer-

ical analyst doesn’t have direct control over the amount of dissipation added. However, by writing

an upwind method as an equivalent central difference method plus numerical dissipation, we can

identify and control the amount of dissipation added to the numerical solution – in some cases

even recovering a nodally exact solution. Through the introduction of some form of numerical

dissipation, not only are we able to get smooth coarse grid solutions but, the resulting systems of

linear equations are more amenable to iterative solutions methods. We now generalize the concept

of upwind methods to the finite element framework.

Bibliography

[1] A. N. Brooks and T. J. R. Hughes. Streamline upwind/Petrov–Galerkin formulations for con-

vection dominated flows with particular emphasis on the incompressible Navier–Stokes equa-

tions. Comp. Meth. Appl. Mech. Eng., 32:199–259, 1982.

[2] G. Fairweather, A. Gourlay, and A. Mitchell. Some high accuracy difference schemes with a

splitting operator for equations of parabolic and elliptic type. Numer. Math., 10:56–66, 1967.

[3] A. Hadjidimos. On some high accuracy difference schemes for solving elliptic equations.

Numeri. Math., 13:396–403, 1969.

[4] D. Peaceman and J. H. H. Rachford. The numerical solution of parabolic and elliptic differen-

tial equations. J. Soc. Indust. Appl. Math., 3:28–41, 1955.

113

